首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
In this article, the approximate solution of nonlinear heat diffusion and heat transfer equation are developed via homotopy analysis method (HAM). This method is a strong and easy‐to‐use analytic tool for investigating nonlinear problems, which does not need small parameters. HAM contains the auxiliary parameter ?, which provides us with a simple way to adjust and control the convergence region of solution series. By suitable choice of the auxiliary parameter ?, we can obtain reasonable solutions for large modulus. In this study, we compare HAM results, with those of homotopy perturbation method and the exact solutions. The first differential equation to be solved is a straight fin with a temperature‐dependent thermal conductivity and the second one is the two‐ and three‐dimensional unsteady diffusion problems. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

2.
A combination of the hybrid spectral collocation technique and the homotopy analysis method is used to construct an iteration algorithm for solving a class of nonlinear optimal control problems (NOCPs). In fact, the nonlinear two-point boundary value problem (TPBVP), derived from the Pontryagin’s Maximum Principle (PMP), is solved by spectral homotopy analysis method (SHAM). For the first time, we present here a convergence proof for SHAM. We treat in detail Legendre collocation and Chebyshev collocation. It is indicated that Legendre collocation gives the same numerical results with Chebyshev collocation. Comparisons are made between SHAM, Matlab bvp4c generated results and results from literature such as homotopy perturbation method (HPM), optimal homotopy perturbation method (OHPM) and differential transformations.  相似文献   

3.
In this paper we present a new efficient modification of the homotopy perturbation method with x 3 force nonlinear undamped oscillators for the first time that will accurate and facilitate the calculations. The He’s homotopy perturbation method is modified by adding a term to linear operator depends on the equation and boundary conditions. We find that this modified homotopy perturbation method works very well for the wide range of time and boundary conditions for nonlinear oscillator. Only two or three iteration leads to high accuracy of the solutions. We then conduct a comparative study between the new modification and the homotopy perturbation method for strongly nonlinear oscillators. Numerical illustrations are investigated to show the accurate of the techniques. The new modified method accelerates the rapid convergence of the solution, reduces the error solution and increases the validity range. The new modification introduces a promising tool for many nonlinear problems.  相似文献   

4.
Based on homotopy, which is a basic concept in topology, a general analytic method (namely the homotopy analysis method) is proposed to obtain series solutions of nonlinear differential equations. Different from perturbation techniques, this approach is independent of small/large physical parameters. Besides, different from all previous analytic methods, it provides us with a simple way to adjust and control the convergence of solution series. Especially, it provides us with great freedom to replace a nonlinear differential equation of order n into an infinite number of linear differential equations of order k , where the order k is even unnecessary to be equal to the order n . In this paper, a nonlinear oscillation problem is used as example to describe the basic ideas of the homotopy analysis method. We illustrate that the second-order nonlinear oscillation equation can be replaced by an infinite number of (2κ)th-order linear differential equations, where κ≥ 1 can be any a positive integer. Then, the homotopy analysis method is further applied to solve a high-dimensional nonlinear differential equation with strong nonlinearity, i.e., the Gelfand equation. We illustrate that the second-order two or three-dimensional nonlinear Gelfand equation can be replaced by an infinite number of the fourth or sixth-order linear differential equations, respectively. In this way, it might be greatly simplified to solve some nonlinear problems, as illustrated in this paper. All of our series solutions agree well with numerical results. This paper illustrates that we might have much larger freedom and flexibility to solve nonlinear problems than we thought traditionally. It may keep us an open mind when solving nonlinear problems, and might bring forward some new and interesting mathematical problems to study.  相似文献   

5.
The algorithm of approximate analytical solution for delay differential equations (DDE) is obtained via homotopy analysis method (HAM) and modified homotopy analysis method (MHAM). Various examples of linear, nonlinear and system of initial value problems of DDE are solved and the results obtained show that these algorithms are accurate and efficient for the DDE. The convergence of this algorithm is also proved.  相似文献   

6.
In this paper, a new technique of homotopy analysis method (HAM) is proposed for solving high‐order nonlinear initial value problems. This method improves the convergence of the series solution, eliminates the unneeded terms and reduces time consuming in the standard homotopy analysis method (HAM) by transform the nth‐order nonlinear differential equation to a system of n first‐order equations. Second‐ and third‐ order problems are solved as illustration examples of the proposed method. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
李壮 《大学数学》2007,23(4):46-49
提出了求解参数识别反问题的同伦正则化方法,给出了相应的收敛性定理.数值结果表明该方法是一种快速的大范围收敛方法.  相似文献   

8.
This paper introduces a discrete homotopy analysis method (DHAM) to obtain approximate solutions of linear or nonlinear partial differential equations (PDEs). The DHAM can take the many advantages of the continuous homotopy analysis method. The proposed DHAM also contains the auxiliary parameter ?, which provides a simple way to adjust and control the convergence region of solution series. The convergence of the DHAM is proved under some reasonable hypotheses, which provide the theoretical basis of the DHAM for solving nonlinear problems. Several examples, including a simple diffusion equation and two-dimensional Burgers’ equations, are given to investigate the features of the DHAM. The numerical results obtained by this method have been compared with the exact solutions. It is shown that they are in good agreement with each other.  相似文献   

9.
求解多目标规划最小弱有效解的同伦内点方法   总被引:3,自引:0,他引:3  
本文利用非线性规划中的组合同伦方法;给出了求解目标规划问题最小弱有效解的同伦内点方法,并证明了该方法是整体收敛的。  相似文献   

10.
The homotopy method for the solution of nonlinear equations is revisited in the present study. An analytic method is proposed for determining the valid region of convergence of control parameter of the homotopy series, as an alternative to the classical way of adjusting the region through graphical analysis. Illustrative examples are presented to exhibit a vivid comparison between the homotopy perturbation method (HPM) and the homotopy analysis method (HAM). For special choices of the initial guesses it is shown that the convergence-control parameter does not cover the HPM. In such cases, blindly using the HPM yields a non convergence series to the sought solution. In addition to this, HPM is shown not always to generate a continuous family of solutions in terms of the homotopy parameter. By the convergence-control parameter this can however be prevented to occur in the HAM.  相似文献   

11.
In this paper, the homotopy analysis method is applied to develop a analytic approach for nonlinear differential equations with time-delay. A nonlinear model in biology is used as an example to show the basic ideas of this analytic approach. Different from other analytic techniques, the homotopy analysis method provides a simple way to ensure the convergence of the solution series, so that one can always get accurate approximations. A new discontinuous function is defined so as to express the piecewise continuous solutions of time-delay differential equations in a way convenient for symbolic computations. It is found that the time-delay has a great influence on the solution of the time-delay nonlinear differential equation. This approach has general meanings and can be applied to solve other nonlinear problems with time-delay.  相似文献   

12.
We introduce a second auxiliary parameter into the zero-order deformation equation and propose a generalization of the homotopy analysis method. This includes the derivation of a general solution in terms of the Bell polynomials for nonlinear equations. Numerical examples show that the proposed zero-order deformation equation improves the convergence region and rate of the series solution and allows greater freedom in the selection of auxiliary operators. This facilitates the development of a homotopy iteration scheme for nonlinear equations with discontinuous or zero derivatives that are not amenable to Newton-type iteration schemes. The homotopy iteration scheme represents a generalization of conventional iteration schemes and additional examples demonstrate its applicability for a wider range of nonlinear problems.  相似文献   

13.
In this paper, we use homotopy analysis method (HAM) to solve two‐point nonlinear boundary value problems that have at least one solution. The new approach provides the solution in the form of a rapidly convergent series with easily computable components using symbolic computation software. The scheme shows importance of choice of convergence‐control parameter ? to guarantee the convergence of the solutions of nonlinear differential equations. This scheme is tested on three nonlinear exactly solvable differential equations. Two of the examples are practical in science and engineering. The results demonstrate reliability, simplicity and efficiency of the algorithm developed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, we introduce a homotopy perturbation method to obtain exact solutions to some linear and nonlinear partial differential equations. This method is a powerful device for solving a wide variety of problems. Using the homotopy perturbation method, it is possible to find the exact solution or an approximate solution of the problem. Convergence of the method is proved. Some examples such as Burgers’, Schrödinger and fourth order parabolic partial differential equations are presented, to verify convergence hypothesis, and illustrating the efficiency and simplicity of the method.  相似文献   

15.
On a new analytical method for flow between two inclined walls   总被引:1,自引:0,他引:1  
Efficient analytical methods for solving highly nonlinear boundary value problems are rare in nonlinear mechanics. The purpose of this study is to introduce a new algorithm that leads to exact analytical solutions of nonlinear boundary value problems and performs more efficiently compared to other semi-analytical techniques currently in use. The classical two-dimensional flow problem into or out of a wedge-shaped channel is used as a numerical example for testing the new method. Numerical comparisons with other analytical methods of solution such as the Adomian decomposition method (ADM) and the improved homotopy analysis method (IHAM) are carried out to verify and validate the accuracy of the method. We show further that with a slight modification, the algorithm can, under certain conditions, give better performance with enhanced accuracy and faster convergence.  相似文献   

16.
In this paper, the approximate analytical solutions of Lotka–Volterra model with fractional derivative have been obtained by using hybrid analytic approach. This approach is amalgamation of homotopy analysis method, Laplace transform, and homotopy polynomials. First, we present an alternative framework of the method that can be used simply and effectively to handle nonlinear problems arising in several physical phenomena. Then, existence and uniqueness of solutions for the fractional Lotka–Volterra equations are discussed. We also carry out a detailed analysis on the stability of equilibrium. Further, we have derived the approximate solutions of predator and prey populations for different particular cases by using initial values. The numerical simulations of the result are depicted through different graphical representations showing that this hybrid analytic method is reliable and powerful method to solve linear and nonlinear fractional models arising in science and engineering. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

17.
大范围求解非线性方程组的指数同伦法   总被引:1,自引:0,他引:1  
夏林林  吴开腾 《计算数学》2014,36(2):215-224
为了解决关于奇异的非线性方程组求根问题,提出了一种由同伦算法推出大范围收敛的连续型方法-指数同伦法,构造了一类指数同伦方程,克服了Jacobi矩阵的奇异,分析了指数同伦方  相似文献   

18.
19.
This paper describes a new problem-solving mentality of finding optimal parameters in optimal homotopy analysis method (optimal HAM). We use particle swarm optimization (PSO) to minimize the exact square residual error in optimal HAM. All optimal convergence-control parameters can be found concurrently. This method can deal with optimal HAM which has finite convergence-control parameters. Two nonlinear fractional-order differential equations are given to illustrate the proposed algorithm. The comparison reveals that optimal HAM combined with PSO is effective and reliable. Meanwhile, we give a sufficient condition for convergence of the optimal HAM for solving fractional-order equation, and try to put forward a new calculation method for the residual error.  相似文献   

20.
For most parallel manipulators, the inverse kinematics is straightforward, while the direct kinematics is challenging. The latter requires the solution of a system of nonlinear equations. In this paper we use the homotopy continuation method to solve the forward and inverse kinematic problems of an offset 3-UPU translational parallel manipulator. The homotopy continuation method is a novel method which alleviates drawbacks of the traditional numerical techniques, namely; the acquirement of good initial guess values, the problem of convergence and computing time. The direct kinematics problem of the manipulator leads to 16 real solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号