首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
A new analytic approach for solving nonlinear ordinary differential equations with initial conditions is proposed. First, the homotopy analysis method is used to transform a nonlinear differential equation into a system of linear differential equations; then, the Laplace transform method is applied to solve the resulting linear initial value problems; finally, the solutions to the linear initial value problems are employed to form a convergent series solution to the given problem. The main advantage of the new approach is that it provides an effective way to solve the higher order deformation equations arising in the homotopy analysis method.  相似文献   

2.
In this paper the SIR and SIS epidemic models in biology are solved by means of an analytic technique for nonlinear problems, namely the homotopy analysis method (HAM). Both of the SIR and SIS models are described by coupled nonlinear differential equations. A one-parameter family of explicit series solutions are obtained for both models. This parameter has no physical meaning but provides us with a simple way to ensure convergent series solutions to the epidemic models. Our analytic results agree well with the numerical ones. This analytic approach is general and can be applied to get convergent series solutions of some other coupled nonlinear differential equations in biology.  相似文献   

3.
Based on homotopy, which is a basic concept in topology, a general analytic method (namely the homotopy analysis method) is proposed to obtain series solutions of nonlinear differential equations. Different from perturbation techniques, this approach is independent of small/large physical parameters. Besides, different from all previous analytic methods, it provides us with a simple way to adjust and control the convergence of solution series. Especially, it provides us with great freedom to replace a nonlinear differential equation of order n into an infinite number of linear differential equations of order k , where the order k is even unnecessary to be equal to the order n . In this paper, a nonlinear oscillation problem is used as example to describe the basic ideas of the homotopy analysis method. We illustrate that the second-order nonlinear oscillation equation can be replaced by an infinite number of (2κ)th-order linear differential equations, where κ≥ 1 can be any a positive integer. Then, the homotopy analysis method is further applied to solve a high-dimensional nonlinear differential equation with strong nonlinearity, i.e., the Gelfand equation. We illustrate that the second-order two or three-dimensional nonlinear Gelfand equation can be replaced by an infinite number of the fourth or sixth-order linear differential equations, respectively. In this way, it might be greatly simplified to solve some nonlinear problems, as illustrated in this paper. All of our series solutions agree well with numerical results. This paper illustrates that we might have much larger freedom and flexibility to solve nonlinear problems than we thought traditionally. It may keep us an open mind when solving nonlinear problems, and might bring forward some new and interesting mathematical problems to study.  相似文献   

4.
An analytic method for strongly non-linear problems, namely the homotopy analysis method (HAM), is applied to give convergent series solution of non-similarity boundary-layer flows. As an example, the non-similarity boundary-layer flows over a stretching flat sheet are used to show the validity of this general analytic approach. Without any assumptions of small/large quantities, the corresponding non-linear partial differential equation with variable coefficients is transferred into an infinite number of linear ordinary differential equations with constant coefficients. More importantly, an auxiliary artificial parameter is used to ensure the convergence of the series solution. Different from previous analytic results, our series solutions are convergent and valid for all physical variables in the whole domain of flows. This work illustrates that, by means of the homotopy analysis method, the non-similarity boundary-layer flows can be solved in a similar way like similarity boundary-layer flows. Mathematically, this analytic approach is rather general in principle and can be applied to solve different types of non-linear partial differential equations with variable coefficients in science and engineering.  相似文献   

5.
The traditional scaled boundary finite-element method (SBFEM) is a rather efficient semi-analytical technique widely applied in engineering, which is however valid mostly for linear differential equations. In this paper, the traditional SBFEM is combined with the homotopy analysis method (HAM), an analytic technique for strongly nonlinear problems: a nonlinear equation is first transformed into a series of linear equations by means of the HAM, and then solved by the traditional SBFEM. In this way, the traditional SBFEM is extended to nonlinear differential equations. A nonlinear heat transfer problem is used as an example to show the validity and computational efficiency of this new SBFEM.  相似文献   

6.
In this article, the homotopy analysis method has been applied to solve nonlinear differential equations of fractional order. The validity of this method has successfully been accomplished by applying it to find the solution of two nonlinear fractional equations. The results obtained by homotopy analysis method have been compared with those exact solutions. The results show that the solution of homotopy analysis method is good agreement with the exact solution.  相似文献   

7.
A new analytic method for highly nonlinear problems, namely the homotopy analysis method, is applied to solve the Von Kármán swirling viscous flow, governed by a set of two fully coupled differential equations with strong nonlinearity. An explicit, purely analytic and uniformly valid solution is given, which agrees well with numerical results.  相似文献   

8.
In this paper, the study the momentum and heat transfer characteristics in an incompressible electrically conducting non‐Newtonian boundary layer flow of a viscoelastic fluid over a stretching sheet. The partial differential equations governing the flow and heat transfer characteristics are converted into highly nonlinear coupled ordinary differential equations by similarity transformations. The resultant coupled highly nonlinear ordinary differential equations are solved by means of, homotopy analysis method (HAM) for constructing an approximate solution of heat transfer in magnetohydrodynamic (MHD) viscoelastic boundary layer flow over a stretching sheet with non‐uniform heat source. The proposed method is a strong and easy to use analytic tool for nonlinear problems and does not need small parameters in the equations. The HAM solutions contain an auxiry parameter, which provides a convenient way of controlling the convergence region of series solutions. The results obtained here reveal that the proposed method is very effective and simple for solving nonlinear evolution equations. The method is straightforward and concise, and it can also be applied to other nonlinear evolution equations in physics. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
In this study, a reliable approach for convergence of the homotopy analysis method when applied to nonlinear problems is discussed. First, we present an alternative framework of the method which can be used simply and effectively to handle nonlinear problems. Then, mainly, we address the sufficient condition for convergence of the method. The convergence analysis is reliable enough to estimate the maximum absolute truncated error of the homotopy series solution. The analysis is illustrated by investigating the convergence results for some nonlinear differential equations. The study highlights the power of the method.  相似文献   

10.
Consideration is given to the homoclinic solutions of ordinary differential equations. We first review the Melnikov analysis to obtain Melnikov function, when the perturbation parameter is zero and when the differential equation has a hyperbolic equilibrium. Since Melnikov analysis fails, using Homotopy Analysis Method (HAM, see [Liao SJ. Beyond perturbation: introduction to the homotopy analysis method. Boca Raton: Chapman & Hall/CRC Press; 2003; Liao SJ. An explicit, totally analytic approximation of Blasius’ viscous flow problems. Int J Non-Linear Mech 1999;34(4):759–78; Liao SJ. On the homotopy analysis method for nonlinear problems. Appl Math Comput 2004;147(2):499–513] and others [Abbasbandy S. The application of the homotopy analysis method to nonlinear equations arising in heat transfer. Phys Lett A 2006;360:109–13; Hayat T, Sajid M. On analytic solution for thin film flow of a forth grade fluid down a vertical cylinder. Phys Lett A, in press; Sajid M, Hayat T, Asghar S. Comparison between the HAM and HPM solutions of thin film flows of non-Newtonian fluids on a moving belt. Nonlinear Dyn, in press]), we obtain homoclinic solution for a differential equation with zero perturbation parameter and with hyperbolic equilibrium. Then we show that the Melnikov type function can be obtained as a special case of this homotopy analysis method. Finally, homoclinic solutions are obtained (for nontrivial examples) analytically by HAM, and are presented through graphs.  相似文献   

11.
In this paper, a one-step optimal approach is proposed to improve the computational efficiency of the homotopy analysis method (HAM) for nonlinear problems. A generalized homotopy equation is first expressed by means of a unknown embedding function in Taylor series, whose coefficient is then determined one by one by minimizing the square residual error of the governing equation. Since at each order of approximation, only one algebraic equation with one unknown variable is solved, the computational efficiency is significantly improved, especially for high-order approximations. Some examples are used to illustrate the validity of this one-step optimal approach, which indicate that convergent series solution can be obtained by the optimal homotopy analysis method with much less CPU time. Using this one-step optimal approach, the homotopy analysis method might be applied to solve rather complicated differential equations with strong nonlinearity.  相似文献   

12.
In this paper a novel approach is presented for an analytic approximate solution of nonlinear differential equations with boundary conditions. By converting the nonlinear problem into an initial value form, a shooting-like procedure is introduced based on the powerful homotopy analysis technique. The proposed methodology is shown to work adequately for solving single or multiple solutions of some sample nonlinear boundary value problems.  相似文献   

13.
In recent work on the area of approximation methods for the solution of nonlinear differential equations, it has been suggested that the so-called generalized Taylor series approach is equivalent to the homotopy analysis method (HAM). In the present paper, we demonstrate that such a view is only valid in very special cases, and in general, the HAM is far more robust. In particular, the equivalence is only valid when the solution is represented as a power series in the independent variable. As has been shown many times, alternative basis functions can greatly improve the error properties of homotopy solutions, and when the base functions are not polynomials or power functions, we no longer have that the generalized Taylor series approach is equivalent to the HAM. In particular, the HAM can be used to obtain solutions which are global (defined on the whole domain) rather than local (defined on some restriction of the domain). The HAM can also be used to obtain non-analytic solutions, which by their nature can not be expressed through the generalized Taylor series approach. We demonstrate these properties of the HAM by consideration of an example where the generalizes Taylor series must always have a finite radius of convergence (and hence limited applicability), while the homotopy solution is valid over the entire infinite domain. We then give a second example for which the exact solution is not analytic, and hence, it will not agree with the generalized Taylor series over the domain. Doing so, we show that the generalized Taylor series approach is not as robust as the HAM, and hence, the HAM is more general. Such results have important implications for how iterative solutions are calculated when approximating solutions to nonlinear differential equations.  相似文献   

14.
In this work, we implement a relatively analytical technique, the homotopy perturbation method (HPM), for solving nonlinear partial differential equations of fractional order. The fractional derivatives are described in Caputo derivatives. This method can be used as an alternative to obtain analytic and approximate solutions of different types of fractional differential equations which applied in engineering mathematics. The corresponding solutions of the integer order equations are found to follow as special cases of those of fractional order equations. He’s homotopy perturbation method (HPM) which does not need small parameter is implemented for solving the differential equations. It is predicted that HPM can be found widely applicable in engineering.  相似文献   

15.
In this paper, the problem of laminar viscous flow in a semi-porous channel in the presence of a transverse magnetic field is presented and the homotopy analysis method (HAM) is employed to compute an approximation to the solution of the system of nonlinear differential equations governing the problem. It has been attempted to show the capabilities and wide-range applications of the homotopy analysis method in comparison with the numerical method in solving this problem. The obtained solutions, in comparison with the numeric solutions admit a remarkable accuracy. A clear conclusion can be drawn from the numerical method’s (NM) results that the HAM provides highly accurate solutions for nonlinear differential equations.  相似文献   

16.
In this paper, we apply the new homotopy perturbation method to solve the Volterra's model for population growth of a species in a closed system. This technique is extended to give solution for nonlinear integro‐differential equation in which the integral term represents the total metabolism accumulated fromtime zero. The approximate analytical procedure only depends on two components. The newhomotopy perturbationmethodwas applied to nonlinear integro‐differential equations directly and by converting the problem into nonlinear ordinary differential equation. We also compare this method with some other numerical results and show that the present approach is less computational and is applicable for solving nonlinear integro‐differential equations and ordinary differential equations as well. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
The homotopy method for the solution of nonlinear equations is revisited in the present study. An analytic method is proposed for determining the valid region of convergence of control parameter of the homotopy series, as an alternative to the classical way of adjusting the region through graphical analysis. Illustrative examples are presented to exhibit a vivid comparison between the homotopy perturbation method (HPM) and the homotopy analysis method (HAM). For special choices of the initial guesses it is shown that the convergence-control parameter does not cover the HPM. In such cases, blindly using the HPM yields a non convergence series to the sought solution. In addition to this, HPM is shown not always to generate a continuous family of solutions in terms of the homotopy parameter. By the convergence-control parameter this can however be prevented to occur in the HAM.  相似文献   

18.
In this article, we illustrate how the Adomian polynomials can be utilized with different types of iterative series solution methods for nonlinear equations. Two methods are considered here: the differential transform method that transforms a problem into a recurrence algebraic equation and the homotopy analysis method as a generalization of the methods that use inverse integral operator. The advantage of the proposed techniques is that equations with any analytic nonlinearity can be solved with less computational work due to the properties and available algorithms of the Adomian polynomials. Numerical examples of initial and boundary value problems for differential and integro-differential equations with different types of nonlinearities show good results.  相似文献   

19.
This paper introduces a discrete homotopy analysis method (DHAM) to obtain approximate solutions of linear or nonlinear partial differential equations (PDEs). The DHAM can take the many advantages of the continuous homotopy analysis method. The proposed DHAM also contains the auxiliary parameter ?, which provides a simple way to adjust and control the convergence region of solution series. The convergence of the DHAM is proved under some reasonable hypotheses, which provide the theoretical basis of the DHAM for solving nonlinear problems. Several examples, including a simple diffusion equation and two-dimensional Burgers’ equations, are given to investigate the features of the DHAM. The numerical results obtained by this method have been compared with the exact solutions. It is shown that they are in good agreement with each other.  相似文献   

20.
In this paper, based on the homotopy analysis method (HAM), a powerful algorithm is developed for the solution of nonlinear ordinary differential equations of fractional order. The proposed algorithm presents the procedure of constructing the set of base functions and gives the high-order deformation equation in a simple form. Different from all other analytic methods, it provides us with a simple way to adjust and control the convergence region of solution series by introducing an auxiliary parameter ??. The analysis is accompanied by numerical examples. The algorithm described in this paper is expected to be further employed to solve similar nonlinear problems in fractional calculus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号