首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 288 毫秒
1.
张维  王文强 《计算数学》2019,41(1):12-36
本文提出了一个改进的分裂步单支θ方法,在漂移项系数满足单边Lipschitz条件下,证明了当数值方法的参数θ满足1/2 ≤ θ ≤ 1时,该数值方法对于这类随机微分方程是强收敛的,并在现有文献的基础上将方法的收敛阶从1/2阶提高到1阶;当0 ≤ θ ≤ 1/2时,若漂移项系数进一步满足线性增长条件,该数值方法也是强收敛的,收敛阶为1阶.文末的数值试验验证了理论结果的正确性.  相似文献   

2.
中立型随机延迟微分方程常出现在一些科学技术和工程领域中.本文在漂移系数和扩散系数关于非延迟项满足全局Lipschitz条件,关于延迟项满足多项式增长条件以及中立项满足多项式增长条件下,证明了分裂步θ方法对于中立型随机延迟微分方程的强收敛阶为1/2.数值实验也验证了这一理论结果.  相似文献   

3.
范振成  宋明辉 《计算数学》2011,33(4):337-344
大多数随机延迟微分方程数值解的结果是在全局Lipschitz条件下获得的.许多延迟方程不满足全局Lipschitz条件,研究非全局Lipschitz条件下的数值解的性质,具有重要的意义.本文证明了漂移系数满足单边Lipschitz条件和多项式增长条件,扩散系数满足全局Lipschitz条件的一类随机延迟微分方程的Eul...  相似文献   

4.
将高精度的Split-Step Backward Euler方法应用于随机固定资产模型,在Lipschitz条件下,利用离散半鞅收敛定理,建立了Split-Step Backward Euler方法对应的数值解的几乎必然指数稳定性的判定准则,并通过数值例子对所给的结论进行了验证.  相似文献   

5.
本文首先提出一类高阶分裂步(θ_1,θ_2,θ_3)方法求解由非交换噪声驱动的非自治随机微分方程.其次在漂移项系数满足多项式增长和单边Lipschitz条件下,证明了当1/2≤θ_2≤1时该方法是1阶强收敛的.此类方法包含很多经典的方法:如随机θ-Milstein方法,向后分裂步Milstein方法等.最后数值实验验证了所得结论.  相似文献   

6.
岳超 《计算数学》2019,41(2):126-155
本文首先提出一类高阶分裂步(θ123)方法求解由非交换噪声驱动的非自治随机微分方程.其次在漂移项系数满足多项式增长和单边Lipschitz条件下,证明了当1/2 ≤ θ2 ≤ 1时该方法是1阶强收敛的.此类方法包含很多经典的方法:如随机θ-Milstein方法,向后分裂步Milstein方法等.最后数值实验验证了所得结论.  相似文献   

7.
根据半驯服Euler法讨论了具有Markov调制的随机年龄结构种群系统的数值解.在非局部Lipschitz条件下,利用Burkholder-Davis-Gundy不等式、Ito公式和Gronwall引理,证明了半驯服Euler数值解不仅强收敛阶数为0.5,而且这种方法在时间步长一定的条件下有很好的均方指数稳定性.最后通过数值例子对所给的结论进行了验证.  相似文献   

8.
根据半驯服Euler法讨论了具有Markov调制的随机年龄结构种群系统的数值解. 在非局部Lipschitz条件下, 利用~Burkholder-Davis-Gundy~不等式、It\^{o} 公式和~Gronwall~引理, 证明了半驯服Euler数值解不仅强收敛阶数为~0.5, 而且这种方法在时间步长一定的条件下有很好的均方指数稳定性. 最后通过数值例子对所给的结论进行了验证.  相似文献   

9.
本文讨论一般的方程系数满足Lipschitz条件的变系数线性双曲型初边值问题差分格式的稳定性,并在很弱的条件下证明了几类差分格式是稳定的,本文还证明了:如果格式稳定,则在解和方程的系数足够光滑时,差分解将收敛于微分方程的解,并且g阶格式在l_2空间有g阶收敛速度。  相似文献   

10.
本文研究了一类新的模型问题:非线性随机分数阶延迟积分微分方程.当方程中的漂移项和扩散项满足全局Lipschitz条件和线性增长条件时,基于压缩映射原理给出了该方程解存在唯一的充分条件.由于理论求解的困难,构造了一种数值方法(Euler-Maruyama方法),并证得强收敛阶为α-1/2,α∈(1/2,1].最后通过数值试验,验证了这一理论结果.  相似文献   

11.
In this paper, we consider strong convergence and almost sure exponential stability of the backward Euler-Maruyama method for nonlinear hybrid stochastic differential equations with time-variable delay. Under the local Lipschitz condition and polynomial growth condition, it is proved that the backward Euler-Maruyama method is strongly convergent. Additionally, the moment estimates and almost sure exponential stability for the analytical solution are proved. Also, under the appropriate condition, we show that the numerical solutions for the backward Euler-Maruyama methods are almost surely exponentially stable. A numerical experiment is given to illustrate the computational effectiveness and the theoretical results of the method.  相似文献   

12.
We present and analyse two implicit methods for Ito stochastic differential equations (SDEs) with Poisson-driven jumps. The first method, SSBE, is a split-step extension of the backward Euler method. The second method, CSSBE, arises from the introduction of a compensated, martingale, form of the Poisson process. We show that both methods are amenable to rigorous analysis when a one-sided Lipschitz condition, rather than a more restrictive global Lipschitz condition, holds for the drift. Our analysis covers strong convergence and nonlinear stability. We prove that both methods give strong convergence when the drift coefficient is one-sided Lipschitz and the diffusion and jump coefficients are globally Lipschitz. On the way to proving these results, we show that a compensated form of the Euler–Maruyama method converges strongly when the SDE coefficients satisfy a local Lipschitz condition and the pth moment of the exact and numerical solution are bounded for some p>2. Under our assumptions, both SSBE and CSSBE give well-defined, unique solutions for sufficiently small stepsizes, and SSBE has the advantage that the restriction is independent of the jump intensity. We also study the ability of the methods to reproduce exponential mean-square stability in the case where the drift has a negative one-sided Lipschitz constant. This work extends the deterministic nonlinear stability theory in numerical analysis. We find that SSBE preserves stability under a stepsize constraint that is independent of the initial data. CSSBE satisfies an even stronger condition, and gives a generalization of B-stability. Finally, we specialize to a linear test problem and show that CSSBE has a natural extension of deterministic A-stability. The difference in stability properties of the SSBE and CSSBE methods emphasizes that the addition of a jump term has a significant effect that cannot be deduced directly from the non-jump literature.This work was supported by Engineering and Physical Sciences Research Council grant GR/T19100 and by a Research Fellowship from The Royal Society of Edinburgh/Scottish Executive Education and Lifelong Learning Department.  相似文献   

13.
This paper deals with the almost sure exponential stability of the Euler-type methods for nonlinear stochastic delay differential equations with jumps by using the discrete semimartingale convergence theorem. It is shown that the explicit Euler method reproduces the almost sure exponential stability under an additional linear growth condition. By replacing the linear growth condition with the one-sided Lipschitz condition, the backward Euler method is able to reproduce the stability property.  相似文献   

14.
A Note on Euler's Approximations   总被引:1,自引:0,他引:1  
We prove that Euler's approximations for stochastic differential equations on domains of d converge almost surely if the drift satisfies the monotonicity condition and the diffusion coefficient is Lipschitz continuous.  相似文献   

15.
The paper studies the almost sure asymptotic convergence to zero of solutions of perturbed linear stochastic differential equations, where the unperturbed equation has an equilibrium at zero, and all solutions of the unperturbed equation tend to zero, almost surely. The perturbation is present in the drift term, and both drift and diffusion coefficients are state‐dependent. We determine necessary and sufficient conditions for the almost sure convergence of solutions to the equilibrium of the unperturbed equation. In particular, a critical polynomial rate of decay of the perturbation is identified, such that solutions of equations in which the perturbation tends to zero more quickly that this rate are almost surely asymptotically stable, while solutions of equations with perturbations decaying more slowly that this critical rate are not asymptotically stable. As a result, the integrability or convergence to zero of the perturbation is not by itself sufficient to guarantee the asymptotic stability of solutions when the stochastic equation with the perturbing term is asymptotically stable. Rates of decay when the perturbation is subexponential are also studied, as well as necessary and sufficient conditions for exponential stability.  相似文献   

16.
This is a continuation of the first author’s earlier paper [1] jointly with Pang and Deng, in which the authors established some sufficient conditions under which the Euler-Maruyama (EM) method can reproduce the almost sure exponential stability of the test hybrid SDEs. The key condition imposed in [1] is the global Lipschitz condition. However, we will show in this paper that without this global Lipschitz condition the EM method may not preserve the almost sure exponential stability. We will then show that the backward EM method can capture the almost sure exponential stability for a certain class of highly nonlinear hybrid SDEs.  相似文献   

17.
The paper develops exponential stability of the analytic solution and convergence in probability of the numerical method for highly nonlinear hybrid stochastic pantograph equation. The classical linear growth condition is replaced by polynomial growth conditions, under which there exists a unique global solution and the solution is almost surely exponentially stable. On the basis of a series of lemmas, the paper establishes a new criterion on convergence in probability of the Euler-Maruyama approximate solution. The criterion is very general so that many highly nonlinear stochastic pantograph equations can obey these conditions. A highly nonlinear example is provided to illustrate the main theory.  相似文献   

18.
In this paper, we develop the truncated Euler-Maruyama (EM) method for stochastic differential equations with piecewise continuous arguments (SDEPCAs), and consider the strong convergence theory under the local Lipschitz condition plus the Khasminskii-type condition. The order of convergence is obtained. Moreover, we show that the truncated EM method can preserve the exponential mean square stability of SDEPCAs. Numerical examples are provided to support our conclusions.  相似文献   

19.
研究了一类带有限延迟的随机泛函微分方程的Euler-Maruyama(EM)逼近,给出了该方程的带随机步长的EM算法,得到了随机步长的两个特点:首先,有限个步长求和是停时;其次,可列无限多个步长求和是发散的.最终,由离散形式的非负半鞅收敛定理,得到了在系数满足局部Lipschitz条件和单调条件下,带随机步长的EM数值解几乎处处收敛到0.该文拓展了2017年毛学荣关于无延迟的随机微分方程带随机步长EM数值解的结果.  相似文献   

20.

This paper deals with numerical solutions of nonlinear stiff stochastic differential equations with jump-diffusion and piecewise continuous arguments. By combining compensated split-step methods and balanced methods, a class of compensated split-step balanced (CSSB) methods are suggested for solving the equations. Based on the one-sided Lipschitz condition and local Lipschitz condition, a strong convergence criterion of CSSB methods is derived. It is proved under some suitable conditions that the numerical solutions produced by CSSB methods can preserve the mean-square exponential stability of the corresponding analytical solutions. Several numerical examples are presented to illustrate the obtained theoretical results and the effectiveness of CSSB methods. Moreover, in order to show the computational advantage of CSSB methods, we also give a numerical comparison with the adapted split-step backward Euler methods with or without compensation and tamed explicit methods.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号