首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
研究了二阶中立型变时滞差分方程Δ2(xn+pxn-l)+qnf(xσ(n))=0解的振动性,获得了该类方程全部非平凡解振动的三个定理.所得结果将二阶中立型差分方程已有的振动性的相应结论推广到了二阶中立型变时滞差分方程.  相似文献   

2.
二阶非线性中立型时滞差分方程的振动性   总被引:3,自引:0,他引:3  
研究了一类具有多个变滞量的变系数的二阶非线性中立型时滞差分方程的振动性,得到了该类方程振动及其解的一阶差分振动的充分条件,推广了现有文献中的某些结果.  相似文献   

3.
研究一类具有多个变滞量的变系数的二阶非线性中立型时滞差分方程的振动性.得到该类方程振动的充分条件及其解的一阶差分振动的充分条件,推广了现有文献中的相关结果.  相似文献   

4.
考虑二阶半线性中立型差分方程给出了方程(1)的解的振动性的充分条件.所有结果推广和改进了关于中立和时滞差分方程已有结果.  相似文献   

5.
研究了一类具有最大值项和连续变量的非线性二阶中立型时滞差分方程的振动性,利用Banach空间的不动点原理和一些不等式技巧,得到了这类方程存在最终正解的充分条件,并得到了该方程振动的一些判别准则.  相似文献   

6.
带有多个变滞量的二阶中立型差分方程振动性判据   总被引:11,自引:0,他引:11  
研究了一类较广泛的带有多个变滞量的变系数的二阶中立型差分方程的振动性 ,给出了该类方程振动及差分算子△振动的判据 .  相似文献   

7.
二阶中立型非线性方程非振动解的渐近性质   总被引:1,自引:0,他引:1  
非中立型的滞后和超前方程,有关非振动解的渐近性质有了很多结果,对于中立型方程也开始有了一些讨论,例如文献[1]讨论了二阶线性微分差分方程非振动解的分类并给出了相应的判定准则,但其分类不彻底. 本文主要考虑非线性中立型方程:  相似文献   

8.
二阶中立型差分方程的振动性   总被引:11,自引:0,他引:11  
研究了一类变系数的二阶中立型时滞差分方程的振动性,得到了该类方程振动及解的一阶差分振动的充分条件。  相似文献   

9.
研究了一类具有多个滞量的变系数的二阶中立型差分方程的振动性,给出了该类方程振动及差分算子振动的充分条件。  相似文献   

10.
我们研究不稳定的二阶中立型差分方程解的振动问题Δ2[x(n)+px(n-τ)〗+q(n)x(g(n))=0,n>n0(1)建立了不稳定的二阶中立型差分方程(1)无界解的振动准则.  相似文献   

11.
In this paper, we propose a new three-level implicit nine point compact cubic spline finite difference formulation of order two in time and four in space directions, based on cubic spline approximation in x-direction and finite difference approximation in t-direction for the numerical solution of one-space dimensional second order non-linear hyperbolic partial differential equations. We describe the mathematical formulation procedure in details and also discuss how our formulation is able to handle wave equation in polar coordinates. The proposed method when applied to a linear hyperbolic equation is also shown to be unconditionally stable. Numerical results are provided to justify the usefulness of the proposed method.  相似文献   

12.
In this paper we provide a version of the Floquet’s theorem to be applied to any second order difference equations with quasi-periodic coefficients. To do this we extend to second order linear difference equations with quasi-periodic coefficients, the known equivalence between the Chebyshev equations and the second order linear difference equations with constant coefficients. So, any second order linear difference equations with quasi-periodic coefficients is essentially equivalent to a Chebyshev equation, whose parameter only depends on the values of the quasi-periodic coefficients and can be determined by a non-linear recurrence. Moreover, we solve this recurrence and obtaining a closed expression for this parameter. As a by-product we also obtain a Floquet’s type result; that is, the necessary and sufficient condition for the equation has quasi-periodic solutions.  相似文献   

13.
In this article, we consider the non-linear difference equation(f(z + 1)f(z)-1)(f(z)f(z-1)-1) =P(z, f(z))/Q(z, f(z)),where P(z, f(z)) and Q(z, f(z)) are relatively prime polynomials in f(z) with rational coefficients. For the above equation, the order of growth, the exponents of convergence of zeros and poles of its transcendental meromorphic solution f(z), and the exponents of convergence of poles of difference ?f(z) and divided difference?f(z)/f(z)are estimated. Furthermore, we study the forms of rational solutions of the above equation.  相似文献   

14.
研究非线性算子方程的近似求解方法.首先对通常的求解非线性方程加速迭代格式进行推广,得到高阶收敛速度的加速迭代格式,最后把这种加速迭代格式推广到非线性算子方程的求解中去,利用非线性算子的渐进展开,证明了这种加速格式具有三阶的收敛速度.  相似文献   

15.
In this paper we prove under certain weak conditions that two classes of implicit difference schemes for the generalized non-linear schrödinger system are convergent and that an iteration method for the corresponding non-linear difference equation is convergent. Therefore, quite a complete theoretical foundation of implicit schemes for the generalized non-linear Schrödinger system is established in this paper.  相似文献   

16.
New existence and uniqueness results for a second order elliptic non-linear equation are obtained by using gauge theory methods on linear holomorphic bundles over an oriented Riemann surface.  相似文献   

17.
We study the recursive formulation of the law of superposition of multiple collinear velocities. We start with the non-linear equation, transform it into two linear coupled difference equations with variable cofficients, and then decouple these latter equations. The coupled difference equations are solved by three different, but interrelated, methods: (i) via the graph theoretic discrete path approach, (ii) by using the general closed form solution of two coupled first order difference equations with variable coefficients, and (iii) in terms of the symmetric functions via the pochhammers of 2 × 2 non-autonomous matrices. The solutions of the decoupled equations are factorial polynomials.  相似文献   

18.
A difference approximation that is second-order accurate in the time step his derived for the general Ito stochastic differential equation. The difference equation has the form of a second-order random walk in which the random terms are non-linear combinations of Gaussian random variables. For a wide class of problems, the transition pdf is joint-normal to second order in h; the technique then reduces to a Gaussian random walk, but its application is not limited to problems having a Gaussian solution. A large number of independent sample paths are generated in a Monte Carlo solution algorithm; any statistical function of the solution (e.g., moments or pdf's) can be estimated by ensemble averaging over these paths  相似文献   

19.
A class of third-order convergence methods of solving roots for non-linear equation,which are variant Newton's method,are given.Their convergence properties are proved.They are at least third order convergence near simple root and one order convergence near multiple roots.In the end,numerical tests are given and compared with other known Newton's methods.The results show that the proposed methods have some more advantages than others.They enrich the methods to find the roots of non-linear equations and they are important in both theory and application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号