首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
关于平稳序列中心秩顺序统计量联合分布的稳定收敛性   总被引:1,自引:0,他引:1  
§1.引言 设{ξ_n}是平稳序列,ξ_1~(n)≤ξ_2~(n)≤…≤ξ_n~(n)是ξ_1,…,ξ_n的顺序统计量,则称{ξ_(kn)~(n)}{ξ_n}的具有秩序列{k_n}的顺序统计量序列。记λ_n=k_n/n和?_n={nλ_n·(1-λ_n}~(1/2),如果min{k_n,n-k_n}→∞或等价地?_n→∞就称{k_n}为变秩序列。  相似文献   

2.
非平稳高斯序列的极值之渐近分布   总被引:3,自引:1,他引:2  
设{ξ_n}是一非平稳高斯序列,Eξ_n=0、Eξ_n~2=1及γ_(ij)=Eξ_iξ_j.以M_n记max ξ_k,以记公共分布是F(x)=/(2π)~(1/2) integral from n=-∞ to x(e~(-u~2/2))du的 i.i.d序列之前n个变量的最大值.已有如下结果:对所述非平稳高斯序列{ξ_n}若  相似文献   

3.
文[1]指出,在QL算法收敛性讨论中,仅有β_1~(K)→0并不能保证α_1~(k)收敛,并证明在加上条件:|α_1~(k)-σ_k|μ0”后,可确保α_1~(k)趋于T的某个固定特征值。本文首先对QL算法收敛性给出了一个精确的定义,然后给出一个与[1]不同的确保收敛的条件: “若{σ_k}_k=1~∞极限存在且β_i~(k)→0,则有α_i~(k)→λ_i(j=1,2,…,m)”条件“{σ_k}_k=1~∞极限存在”与“α_1~(k)-σ_k|→0”互不包含,在具体应用中,对后者无法判别(如[3]中给出的NS位移)或不成立的某些场合,前者具有独到的优点。  相似文献   

4.
In this paper, we show that for log(2/3)/2log2≤β≤1/2, suppose S is an invariant subspace of the Hardy-Sobolev spaces H_β~2(D~n) for the n-tuple of multiplication operators(M_(z_1),...,M_(z_n)). If(M_(z_1)|S,..., M_(z_n)|S) is doubly commuting, then for any non-empty subset α = {α_1,..., α_k} of {1,..., n}, W_α~S is a generating wandering subspace for M_α|_S =(M_(z_(α_1))|_S,..., M_(z_(α_k))|_S), that is, [W_α~S]_(M_(α |S))= S, where W_α~S=■(S■z_(α_i)S).  相似文献   

5.
在正实轴上考虑函数系,其中Reμ_n>0,n=1,2,…,且用S_k表示μ_k在{μ_1,μ_2,…,μ_k}中出现的次数,P_k表示μ_k在序列{U_n}_1~∞中出现的次数,已知 Mntz-Szasz定理:要使函数系在空间L~2[0, ∞)中完备,即对任意f(x)∈L~2《0, ∞),对任给ε>0,存在P_n(x)=sum from k=1 to n(c_ke~(-μ_ke~x)x~(S_(k-1)))使得  相似文献   

6.
Let(ξ_n)_(n=0)~∞ be a Markov chain with the state space X = {1, 2, ···, b},(g_n(x, y))_(n=1)~∞ be functions defined on X × X, and F_(m_n,b_n)(ω) =1 /b_n sum from k=m_n+1 to m_n+b_n g_k(ξ_(k-1), ξ_k).In this paper the limit properties of F_(m_n,b_n)(ω) and the generalized relative entropy density f_(m_n,b_n)(ω) =-(1/b_n) log p(ξ_(m_n,m_n+b_n)) are discussed, and some theorems on a.s. convergence for(ξ_n)_n=0~∞ and the generalized Shannon-McMillan(AEP) theorem on finite nonhomogeneous Markov chains are obtained.  相似文献   

7.
矩阵特征值的几个扰动定理   总被引:1,自引:1,他引:0  
1 引言 设A∈C~(n×m),B∈C~(m×m)(m≤n),它们的特征值分别为{λ_k}_(k=1)~n和{μ_k}_(k=1)~m.令 R=AQ-QB (1)这里Q∈C~(n×m)为列满秩矩阵.Kahan研究了矩阵A在C~(n×m)上的Rayleigh商的性质,证明了下列定理:设A为Hermite矩阵,Q为列正交矩阵,即Q~HQ=I,而B=Q~HAQ,则存在 1,2,… ,n的某个排列π,使得 {sum from j=1 to m │μ_j-λ_(π(j))│~2}~(1/2)≤2~(1/2)‖R‖_F (2)其中R如(1)所示,‖·‖_F为矩阵的Frobenius范数.刘新国在[2]中将此定理推广到B为可对角化矩阵的情形,并且还建立了较为一般的扰动定理:设A为正规矩阵,B为可对角化矩阵;存在非奇异矩阵G,使得G~(-1)BG为对角阵,则存在1,2,…,n的某个排列π,使得 │μ_j-λ_(π(j))│≤2(2~(1/2))nK(G)_(σ_m~(-1))‖R‖_F,j=1,2,…,m. (3)  相似文献   

8.
The present paper is concerned with the nonlinear elliptic system of second order. Firstly, we shall establish a complex form of the system. Secondly .we shall consider the solvability of some boundary value problems for tbe complex equation of second order. let (1) \[{\Phi _j}(x,y,U,V,{U_x},{U_y},...,{U_{xx}},{U_{yy}},{V_{xx}},{V_{xy}},{V_{yy}}) = 0,j = 1,2\] be the I. G. Petrowkii’s nonlinear elliptic system of second Qrder in the botinded domain G, where \[{\Phi _j}(x,y,{z_1},...,{z_{12}})(j = 1,2)\]) are continuous real functions of the variables \[x,y[(x,y) \in G],{z_1},...,{z_{12}} \in R\], (the real axis), and contiriupusly differentiable for \[{z_1},...,{z_{12}} \in R\]. The solutions \[[U(x,y),V(x,y)]\], F(a?, y)] of the system are understood in the generalized sense. THEOBEM I. i) If the I. G. Petrovskii;s nonlinear system of equations (1) satisfies the M. I. visik-D. Xiagi’s uniformly elliptic condition for any solutions U(x,y),V(x,y) of (1) in G, then it can be written as the following complex equation? (2)\[{W_{z\overline z }} = F(z,W,{W_z},\overline {{W_z}} ,{W_{zz}},{\overline W _{zz}})\] where W=U+iV, z=x+iy, \[{W_z} = \frac{1}{2}[{W_x} - i{W_y}],...,\], ii) If the I. G. Petrovskii's nonlinear elliptic system (1) satisfies the condition that there exist two positive constants \[\delta \] and K, such that (3) \[|{\Phi _{j{U_{xx}}}}|,|{\Phi _{j{U_{xy}}}}|,|{\Phi _{j{U_{yy}}}}|,|{\Phi _{j{V_{xx}}}}|,|{\Phi _{j{V_{xy}}}}|,|{\Phi _{j{V_{yy}}}}| \leqslant K,j = 1,2\] \[|det(A)| \geqslant \delta > 0\], in G, then by a suitable linear trans-formation of the variables (x,y)into variables \[(\xi ,\eta )\], system (1) can be written as the following coinplex equation ⑷ \[{W_{\xi \xi }} = F(\xi ,W,{W_\xi },{\overline W _\xi },{W_{\xi \xi }},{\overline W _{\xi \xi }}),\varsigma = \xi + i\eta \] In the following section, we discuss the complex equation (2) of the following form: ,We^B(z9 Wee)x .\[(5)\left\{ \begin{gathered} {W_{zz}} = F(z,W,{W_z},{\overline W _z},{W_{zz}},{\overline W _{zz}}) \hfill \ F = {Q_1}{W_{zz}} + {Q_2}\overline {{W_{\overline z \overline z }}} + {Q_4}{W_{zz}} + {A_1}{W_z} + {A_2}{\overline W _{\overline z }} \hfill \ + {A_3}\overline {{W_z}} + {A_4}{W_{\bar z}} + {A_5}W + {A_6}\bar W + {A_7}, \hfill \ {Q_j} = {Q_j}(z,W,{W_{\bar z}},{\overline W _{\bar z}},{W_{zz}},{\overline W _{zz}}),j = 1,...,4 \hfill \ {A_j} = {A_j}(z,W,{W_z},{\overline W _z}),j = 1,...,7 \hfill \\ \end{gathered} \right.\] 1) \[{Q_j}(z,W,{W_z},{\overline W _z},U,V),j = 1,...,4.{A_j} = (z,W,{W_z},{\overline W _z}),j = 1,...,7\] are measurable functions of z for any continuously differentiable functions W(z) and measurable functions U(z), V(z) in G, Furthermore they satisfy (6)\[{\left\| {{A_j}} \right\|_{{L_p}(\overline {G)} }} \leqslant {K_0},j = 1,2,{\left\| {{A_j}} \right\|_{{L_p}(\overline {G)} }} \leqslant {K_1},j = 3,...,7\] where\[{K_0},{K_1}( \leqslant {K_0}),p( > 2)\] are constants: 2) Qj, Aj are continuous for \[W,{W_z},{\overline W _z} \in E\](the whole plane) and the continuity is uniform with respect to almost every point \[z \in G\] and \[U,V \in E\] 3) \[F(z,W,{W_z},{\overline W _z},U,V)\] satisfies the following Lipschitz's condition, i.e. for almost every point \[z \in G\], and for all \[W,{W_z},{\overline W _z}{U_1},{U_2},{V_1},{V_2} \in E\], the inequality (7)\[\begin{gathered} |F(z,W,{W_z},{\overline W _z},{U_1},{V_1}) - F(z,W,{W_z},{\overline W _z},{U_2},{V_2})| \hfill \ \leqslant {q_0}|{U_1} - {U_2}| + q_0^'|{V_1} - {V_2}|,{q_0} + q_0^' < 1 \hfill \\ \end{gathered} \] holds where \[{q_0},q_0^'\] are two nonnegative constants. In this paper, let G be a simply connected domain with boundary \[\Gamma \in C_\mu ^2(0 < \mu < 1)\]; without loss of geaerality, we may assume that G is the unit disk |z|<1. Now we, describe the results of the solvability of Riemann-Hilbert botindary value problem (Problem R-H) and the oblique derivative problem (Problem P) for Eq. (5) in the unit disk G: |z| <1. Problem R-H. We try to find a solution W(z)of Eq. (5) which is continuonsly differentiable on \[G\], and satisfies the boundary conditions: (8) \[\operatorname{Re} [{{\bar z}^{{\chi _1}}},{W_z}] = {r_1}(z),Re[{{\bar z}^{{\chi _2}}}\overline {W(z)} ] = {r_2}(z),z \in \Gamma \]? where \[{\chi _1},{\chi _2}\] are two integers, and \[{r_j} \in C_v^{j - 1}(\Gamma ),j = 1,2,\frac{1}{2} < v < 1\] Problem P. we try to find a solution W(z) of Eq. (5) which is continuously diffierentiabfe on \[\overline G \] and satisfies the boundaory conditions: (9) \[\operatorname{Re} [{{\bar z}^{{\chi _1}}}{W_z}] = {r_1}(z),Re[{{\bar z}^{{\chi _2}}}\overline {W(z)} ] = {r_2}(z),z \in \Gamma \], Where \[{\chi _1},{\chi _2},{r_1}(z),{r_2}(z)\] are the same as in (8), but \[{r_2}(z) \in {C_v}(\Gamma )\]. Theorem II. Suppose that Eq. (5) satisfies the condition C and the constants \[q_0^'\] and K1 are adequately small; then the solvability of Problem R-H is as follows: 1) When \[{\chi _1} \geqslant 0,{\chi _2} \geqslant 0\] Problem R-H is solvable; 2) When \[{\chi _1} < 0,{\chi _2} \geqslant 0(or{\kern 1pt} {\kern 1pt} {\chi _1} \geqslant 0,{\chi _2} < 0){\kern 1pt} \] there are \[2|{\chi _1}| - 1(or2|{\chi _2}| - 1)\] solvable conditions for Problem R-H; 3) WHen \[{\chi _1} < 0,{\chi _2} < 0\], there are \[2(|{\chi _1}| + |{\chi _2}| - 1)\] solvable conditions for Problem R-H. Theorem III Let Eq (5) satisf the condition C and the constants \[q_0^'\] and \[{K_1}\] are adequately small, then tbe solvability of Problem P is as follows: 1) When \[{\chi _1} \geqslant 0,{\chi _2} \geqslant 0\] Problem P is solvable; 2) When \[{\chi _1} < 0,{\chi _2} \geqslant 0(or{\kern 1pt} {\kern 1pt} {\chi _1} \geqslant 0,{\chi _2} < 0){\kern 1pt} {\kern 1pt} {\kern 1pt} \], there are \[2|{\chi _1}| - 1(or2|{\chi _2}| - 1)\] solvable conditions for Problem P; 3) When \[{\chi _1} < 0,{\chi _2} < 0\]; there are \[2|{\chi _1}|{\text{ + }}|{\chi _2}| - 1)\] solvable conditions for Problem P. Furthermore, the solution W(z) of Problem P for Eq. (5) may be expressed as \[{g_j}(\xi ,z) = \left\{ \begin{gathered} \int_0^z {\frac{{{z^{2{\chi _j} + 1}}}}{{1 - \bar \xi z}}dz,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} for{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\chi _j} \geqslant 0} \hfill \ \int_0^z {\frac{{{\xi ^{ - 2{\chi _j} - 1}}}}{{1 - \bar \xi z}}dz,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} for{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\chi _j} < 0} \hfill \\ \end{gathered} \right.j = 1,2\] where \[{\Phi _0}(z) = a + ib\] is a complex constant,and \[{\Phi _1}(z),{\Phi _2}(z)\] are two analytic functions. The proofs of the above stated theorems are based on a prior estimates for the bounded solutes of these boundary value problems and Leray-Schander theorem. Besides, we have considered also the solvability of Problem R-H and Problem P for Eq. (6) in the multiply connected domain.  相似文献   

9.
张磊 《计算数学》1981,3(3):224-230
A为N阶方阵,N=2n,设A的特征值为ξ_1,ξ_2,…,ξ_N,根据[3]有如下定义: 定义1.若所有的 Reξ_i<0,则称系统(1.1)是渐近稳定的,相应的A阵叫渐近稳定阵;若所有的Reξ_i≤0且对所有的Reξ_k=0的ξ_k对应的初级因子均是线性的,则称系  相似文献   

10.
陈方维 《数学学报》2013,(3):419-426
研究了几何测度空间中的基本对称函数μ_0,μ_1,…,μ_n和内蕴体积函数V_0,V_1,…,V_n,证明了Ln上连续不变赋值函数空间中由基本对称函数构成的基{μ_0,μ_1,…,μ_n}和由内蕴体积函数构成的基{V_0,V_1,…V_n}(或均质积分构成的基{W_0,W_1,…,W_n})等价.  相似文献   

11.
Slutsky 曾经证明下述定理:设随机变数序列(?)分别依概率收敛于常数 α_1,α_2,…,α_k,即 (?),i=1,2…,k 对任一给定的 ε>0成立,则对任一有理函数 R(x_1,x_2,…,x_k)当 R(α_1,α_2,…,α_k)有意义时必有 R(ξ(1n)ξ(2n)…,ξ(kn))依概率收敛于 R(α_1,α_2,…,α_k)。文献[1]推广了上述结果证明了 R 为 R~t(k 维欧氏空间)上的 Borel 函数,并在(α_1,α_2,…,α_k)处连续的条件下 Slutsky 定理仍成立。上述定理及其  相似文献   

12.
假定X是具有范数‖·‖的复Banach空间,n是一个满足dim X≥n≥2的正整数.本文考虑由下式定义的推广的Roper-Suffridge算子Φ_(n,β_22γ_2,…,β_(n+1),γ_(n+1))(f):(?)其中x∈Ω_(p1,p2,…,pn+1),β_1=1,γ_1=0和(?)这里p_j1(j=1,2,…,n+1),线性无关族{x_1,x_2,…,x_n}(?)X与{x_1~*,x_2~*,…,x_n~*}(?) X~*满足x_j~*(x_j)=‖x_j‖=1(j=1,2,…,n)和x_j~*(x_k)=0(j≠k),我们选取幂函数的单值分支满足(f(ξ)/ξ)~(β_j)|ξ=0=1和(f′(ξ))~(γ_j)|ξ=0=1,j=2,…,n+1.本文将证明:对某些合适的常数β_j,γ_j,算子Φ_(n,β_2,γ_2,…,β_(n+1),γ_(n+1))(f)在Ω_(p_1,p_2,…,p_(n+1))上保持α阶的殆β型螺形映照和α阶的β型螺形映照.  相似文献   

13.
该文研究集值映象方程0∈T(z)的解的迭代逼近,其中T是极大强单调算子.设{x^k}与{e^k}是由不精确邻近点算法x^{k+1}+c_kT(x^{k+1})> x^k+e^{k+1}生成的序列,满足‖e^{k+1}‖≤η_k‖x^{k+1}_x^k‖, ∑^∞_{k=0}(η_k-1)<+∞且inf_(k≥0) η_k=μ≥1.在适当的限制下证明了,{x^k}收敛到T的一个根当且仅当 lim inf_{k→+∞} d(x^k,Z)=0,其中Z是方程0∈T(z)的解集  相似文献   

14.
如果A是Πsubsub空间上的自共轭算子,由文[1]可知存在空间昨一个标准分解 \[{\Pi _k} = N \oplus \{ Z + {Z^*}\} \oplus P\] 在此分解下,A有三角模型\[A = \{ S,{A_N},{A_p},F,G,Q\} \].利用三角模型,我们直接证明了 定理1设A是\[{\Pi _k}\]上的-共轭算子,n是任何自然数,那末\[{A^n}\]也是自共轭算子. 定理2设A是\[{A^n}\]上的自共轭算子,那末对所有的\[{A^n}(n = 1,2,...)\],存在一个公共 的标准分解,在此分解下 \[\begin{gathered} {A^n} = \{ {S^n},A_N^n,A_P^n,\sum\limits_{i = 0}^{n - 1} {{S^i}} FA_N^{n - 1 - i},\sum\limits_{i = 0}^{n - 1} {{S^i}GA_P^{n - 1 - i}} , \hfill \ \sum\limits_{i = 0}^{n - 1} {{S^i}} Q{S^{*n - 1 - i}} - \sum\limits_{i + j + k = n - 2} {{S^i}(FA_N^j{F^*} + GA_P^j{G^*}){S^{*k}}} \} \hfill \\ \end{gathered} \] 定理3 设A是瓜空间上的自共轭算子,\[\sigma (A) \subset [0,\infty ),0 \notin {\sigma _P}(A),\],那末存在唯 一的自共轭算子A1,满足\[A_1^n = A,\sigma ({A_1}) \subset [0,\infty )\] 其次,我们研究了谱系在临界点附近的性状.记临界点全体为\[C(A)\]).对 \[{\lambda _0} \in C(A)\]记S与入0相应的最高阶根向量的阶数为\[r({\lambda _0})\] 定理4设A是\[{\Pi _k}\]空间上的无界自共轭算子,\[C(A) \cap ({\mu _1},{\nu _1}) = \{ {\lambda _0}\} \],那末以下四 个命题等价: (i)\[\mathop {sup}\limits_{\mu ,\nu } \{ \left\| {{E_{\mu \nu }}} \right\||{\lambda _0} \in (\mu ,\nu ) \subset ({\mu _1},{\nu _1})\} < \infty \] (ii)\[{\mu ^{{\text{1}}}}...,{\mu ^{{{\text{k}}_{\text{0}}}}}\]是全有限的测度; (iii)\[s - \lim {\kern 1pt} {\kern 1pt} {\kern 1pt} {E_{\mu \nu }}\]存在; (iv)A与\[{\lambda _0}\]相应的根子空间\[{\Phi _{{\lambda _0}}}\]非退化;这里\[{\mu ^{{\text{1}}}}...,{\mu ^{{{\text{k}}_{\text{0}}}}}\]是由\[{A_P}\]与G导出的测度. 定通5 设A是\[{\Pi _k}\]上自共轭算子,\[{\lambda _0} \in C(A),r({\lambda _0}) = n\],那么 (i)\[{E_{\mu \nu }}\]在\[{{\lambda _0}}\]处的奇性次数不超过2n, (ii)\[s - \mathop {\lim }\limits_{\varepsilon \to 0} \int_{[{M_1},{\lambda _0} - \varepsilon )} {(t - {\lambda _0}} {)^{2n}}d{E_t},s - \mathop {\lim }\limits_{\varepsilon \to 0} \int_{[{\lambda _0} + \varepsilon ,{M_2})} {(t - {\lambda _0}} {)^{2n}}d{E_t},\]存在。这里\[{M_1},{M_2}\]满足\[[{M_1},{M_2}] \cap C(A) = \{ {\lambda _0}\} \] 定理6 设A是\[{\Pi _k}\]上的自共轭算子,临界点集\[C(A) = \{ {\lambda _1},...,{\lambda _l},{\lambda _{l + 1}},{\overline \lambda _{l + 1}},...,{\lambda _{l + p}},{\overline \lambda _{l + p}},\],这里\[\operatorname{Im} {\lambda _v} = 0(1 \leqslant \nu \leqslant l),r({\lambda _\nu }) = {n_\nu }\]那么有 \[{(\lambda - A)^{ - 1}} = \int_{ - \infty }^\infty {K(\lambda ,t)d{E_t}} + \sum\limits_{\nu = 1}^l {\sum\limits_{i = 1}^{2{n_\nu } + 1} {\frac{{{B_{\nu i}}}}{{{{(\lambda - {\lambda _\nu })}^i}}}} } + \sum\limits_{\nu = l + 1}^{l + p} {\sum\limits_{i = 1}^{{n_\nu }} {[\frac{{{B_{\nu i}}}}{{{{(\lambda - {\lambda _\nu })}^i}}}} } + \frac{{B_{\nu i}^ + }}{{{{(\lambda - {{\overline \lambda }_v})}^i}}}]\] 这里 \[K(\lambda ,t) = \frac{1}{{\lambda - t}} - \sum\limits_{v = 1}^l {\delta (t - {\lambda _v}} )\sum\limits_{i = 1}^{2{n_v}} {\frac{{{{(t - {\lambda _v})}^{i - 1}}}}{{{{(\lambda - {\lambda _v})}^i}}}} ,\delta \lambda {\text{ = }}\left\{ \begin{gathered} {\text{1}}{\text{|}}\lambda {\text{| < }}\delta \hfill \ {\text{0}}{\text{|}}\lambda {\text{|}} \geqslant \delta \hfill \\ \end{gathered} \right.\] \[0 < \delta < \mathop {\min }\limits_\begin{subarray}{l} 1 \leqslant \mu ,v \leqslant l \\ {\lambda _\mu } \ne {\lambda _v} \end{subarray} |{\lambda _\mu } - {\lambda _v}|\].对\[1 \leqslant v \leqslant l\],\[{B_{vi}}\]是\[{\Pi _k}\]上的有界自共轭算子,而当\[l + 1 \leqslant v \leqslant l + p\]时,\[{B_{vi}} = {({\lambda _\mu } - S)^{i - 1}}{P_{\lambda v}}\]是以与\[{{\lambda _v}}\]相应的根子空间为值域的某些平行投影. 定理7 在定理6的条件下,有 \[\begin{gathered} {\text{f}}(A) = \int_{ - \infty }^\infty {[f(t) - \sum\limits_{v = 1}^l {\delta (t - {\lambda _v}} } )\sum\limits_{i = 0}^{2{n_v} - 1} {\frac{{{f^{(i)}}({\lambda _v})}}{{i!}}} (t - {\lambda _v})d{E_t} \hfill \ {\text{ + }}\sum\limits_{{\text{v = 1}}}^{\text{l}} {\sum\limits_{i = 0}^{2{n_v}} {\frac{{{f^{(i)}}({\lambda _0})}}{{i!}}} } {B_v} + \sum\limits_{v = l + 1}^{l + p} {\sum\limits_{i = 0}^{{n_v} - 1} {[\frac{{{f^{(i)}}({\lambda _v})}}{{i!}}} } {B_{vi}} + \frac{{{f^{(i)}}({{\overline \lambda }_v})}}{{i!}}B_{vi}^ + ] \hfill \\ \end{gathered} \] 这里\[f(\lambda )\]在\[\sigma (A)\]的一个邻域内解析. 为了建立更一般的算子演算,我们引入两个特殊的代数: \[{\Omega _n} = \{ (f,\{ {a_i}\} _{i = 0}^{2n})|f\]为Borel可测函数,\[\{ {a_i}\} \]为一常数}。对\[F = (f,\{ {a_i}\} ) \in {\Omega _n},G = (g,\{ {b_i}\} ) \in {\Omega _n}\],定义 \[\begin{gathered} \alpha F + \beta G = (\alpha f + \beta G,\{ \alpha {a_i} + \beta {b_i}\} ) \hfill \ F \cdot G = (f \cdot g,\{ \sum\limits_{j = 0}^i {{a_j}} {b_{i - j}}\} ),\overline F = (\overline f ,\{ {\overline a _i}\} ) \hfill \\ \end{gathered} \] 显然\[{\Omega _n}\]是一个交换代数,它的子代数\[{\omega _n}\]定义为 \[{\omega _n} = \{ F = (f,\{ {a_i}\} ) \in {\Omega _n}|\]在0点的一个与F有关的邻域中,成立\[{\text{|f(t) - }}\sum\limits_{i = 0}^{2n} {a{t^i}} | \leqslant {M_F}|t{|^{2n + 1}},{M_F}\]与F有关} 定义 设A是\[{\Pi _k}\]上的自共轭算子,C(A)={0},r(0)=n,对\[F = (f,\{ {a_i}\} ) \in {\omega _n}\],定义 \[\begin{gathered} FA{\text{ = }}\int_{{\text{ - }}\infty }^\infty {|f(t) - \sum\limits_{i = 0}^{2n} {{a_i}} } {t^i}{|^2}d{E_t} + \sum\limits_{i = 0}^{2n} {{a_i}} {A^i} \hfill \ DF(A)) = D({A^{2n}}) \cap \{ x \in {\Pi _k}\int_{{\text{ - }}\infty }^\infty {|f(t) - \sum\limits_{i = 0}^{2n} {{a_i}} } {t^i}{|^2}d{\left\| {{E_t}x} \right\|^2} < \infty \hfill \\ \end{gathered} \] 如果f解析,\[F = (f,\{ \frac{{{f^{(i)}}(0)}}{{i!}}\} )\],那么可得F(A)=f(A)。 定理8 设A是有界自共轭算子,C(A)={0},r(0)=n,\[G \in {\omega _n}\],那么 \[\begin{gathered} \overline F (A) = {[F(A)]^ + },(\alpha F + \beta G)(A) = \alpha F(A) + \beta G(A) \hfill \ (FG)(A) = F(A)G(A). \hfill \\ \end{gathered} \] 定理9 设A是\[{\Pi _k}\]上的自共轭算子,C(A)={0},r(0)=n,\[{F_1} = ({f_1},\{ {a_i}\} ) \in {\Omega _n}\],\[{F_2} = ({f_2},\{ {a_i}\} ) \in {\omega _n},{f_1},{f_2}\]在\[( - \infty ,\infty )\]连续,在\[\sigma (A)\]上恒等,那么\[{F_1}(A) = {F_2}(A)\]。 定理10 设A是\[{\Pi _k}\]上自共轭算子C(A)={0},r(0)=n,\[F = (f,\{ {a_i}\} ) \in {\Omega _n}\]f是连续函数,那么\[\sigma (F(A)) = \{ f(t)|t \in \sigma (A)\} \]。 在定理11中,我们建立了F(A)的三角模型并由此证明当\[F = \overline F \]时,\[C(F(A)) = \{ f(t)|t \in C(A)\} \] 定理12 设A施可析\[{\Pi _k}\]空间上的自共轭算子,C(A)={0},r(0)=n,与0相应的根子空间非退化,T是稠定闭算子,那么\[T \in {\{ A\} ^{'}}\]的充要条件是存在\[F \in {\Omega _n}\],使T=F(A)。这里\[{\{ A\} ^{'}} = \{ T|\]对满足\[BA \subset AB\]的有界算子B,均有\[BT \subset TB\]}  相似文献   

15.
《系统科学与数学》1991,11(4):371-373
设 G 是 n 维欧氏空间 E~n 中的有界区域.B(x_0,r)记中心在 x 半径为 r 的球体,B(r)=B(0,r).W_2~1(G)和\mathring{W}_2^1(G)是通常的空间.[W_2~1(G)]~N 和[\mathring{W}_2^1(G)]~N为 N 维向量值函数的空间.限于 n≥3.在 G 中考虑方程...  相似文献   

16.
利用锥理论和不动点指数理论,研究了一类二阶m-点边值问题{u'(x)+f(u(x))=0,0≤x≤1,u(0)=0,u(1)-0,u(1)=m-2∑i-1 a_iu(ξ_i)其中ξ_i∈(0,1),0ξ_1ξ_2…ξ_(m-2)1,a_i∈[0,∞),0∑_(i=1)~(m-2)a_i1,f∈C(R,R)变号解的存在性.  相似文献   

17.
1. Introduction Let W_∞~((r)) (β) = {f| f∈W_∞~((r)) [-1,1], ||f||_(C[-1,1]) β, ||f~((r))||_∞ 1}.In this paper, we will consider the following Landau problem:λf~((k))(ξ) + μf~((k-1)) (ξ) →inf, f∈W_∞~((r)) (β), (1.1)where ξ∈[-1,1], 1(?)k(?)r-1, and λ, μ real and not all zero, (if k=1,suppose λ≠0 in addition ). A. Pinkus studied it first. To begin with, we introduce some fundamental definitions anddenotions. The perfect spline f, which satisfies || f~((r))||_∞ = 1 andhas n knots and n+r+1 points of equioscillation in [-1,1], isdenoted by x_(nr), which is refered as Tchebyshev perfect spline. And  相似文献   

18.
引理1.設α≥0,則 引理2.若 1) y_n+1>y_n(n=1,2,…,); 2) (?)y_n=+∞; 3) (?)(x_n+1-x-n)/(y-n+1-y_n)存在,則 这两个引理的証明可参看[1]及[2];引理2又称为施篤茲定理。下面我們用σ_n~2表示随机变量ξ_n的方差,用ρ_(ij)表示随机变量ξ_i与ξ_j的相关系数。定理.設{ξ_n}是一随机变量序列,如果存在0≤λ<1,使得 1) (σ_1~2+…+σ_n~2)>A,对任何n成立; 2) 当|i-j|→∞时,|i-j|~λρ_(ij)一致趋向于0,則这随机变量列滿足弱大数定理。  相似文献   

19.
本文考虑稳定时间序列的p阶线性预报问题,提出一个不受异常值影响的数学模型: 其中当k<1及k>n时ξ_k=0。进而将(1)归结为含有自由变量的线性规划问题 min1~Tδ~++1~Tδ~- (2) s.t.Aα+[E,-E][δ~(+T),δ~(-T)]=b,δ~+,δ~-≥0。其中α=[α_1,…,α_p]~T,b=[-ξ_2,…,-ξ_n,0,…,0]~T∈R~(p+n-1),1=[1,…,1]~T∈R~(p+n-1),A是(p+n-1)×p阶Toeplitz矩阵  相似文献   

20.
周毓麟 《数学学报》1961,11(3):204-221
<正> 在1954年与研究了非线性拋物型方程在长方形区域R{0≤x≤X,0≤t≤T}上的第一边界問題和在区域S{-∞相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号