首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
一类时间分数阶偏微分方程的解   总被引:2,自引:2,他引:0  
考虑一类时间分数阶偏微分方程,该方程包含几种特殊情况:时间分数阶扩散方程、时间分数阶反应-扩散方程、时间分数阶对流-扩散方程以及它们各自相对应的整数阶偏微分方程. 通过Laplace-Fourier变换及其逆变换,该方程在空间全平面和半平面内的基本解可以求出,但其表达式则是通过适当的变形来求.另外,对于有限域上的初边值问题,则可由Sine(Cosine)-Laplace变换导出该方程的一种级数形式的解,并通过两个数值例子来说明该方法的有效性.  相似文献   

2.
正1引言分数阶微分方程越来越多地出现在各个研究领域和工程应用中,对于求解分数阶微分方程,常用的解析方法有拉普拉斯变换法和傅立叶变换法等,但其解析解在实际的工程中意义并不大,并且在很多情形下,分数阶微分方程的解析解是很难找到的,而数值解在实际中的应用更广泛一些.分数阶扩散波方程是经典的扩散方程(或波方程)的一种推广.  相似文献   

3.
杨水平 《计算数学》2017,39(1):98-114
本文利用Jacobi谱配置方法数值求解了一类分数阶多项延迟微分方程,并证明了该方法是收敛的,通过若干数值算例验证了相应的理论结果,结果表明Jacobi谱配置方法求解这类方程是非常高效的,同时也为这类分数阶延迟微分方程的数值求解提供了新的选择,对分数阶泛函方程的数值方法的研究有一定的指导意义.  相似文献   

4.
利用无单元Galerkin法,对Caputo意义下的时间分数阶扩散波方程进行了数值求解和相应误差理论分析。首先用L1逼近公式离散该方程中的时间变量,将时间分数阶扩散波方程转化成与时间无关的整数阶微分方程;然后采用罚函数方法处理Dirichlet边界条件,并利用无单元Galerkin法离散整数阶微分方程;最后推导该方程无单元Galerkin法的误差估计公式。数值算例证明了该方法的精度和效果。  相似文献   

5.
杨水平 《应用数学》2017,30(3):512-524
本文利用Jacobi配置方法数值求解几类分数阶多项比例延迟微分方程初值问题,给出相应的误差分析,并利用若干数值算例验证了相应的理论结果,表明Jacobi配置方法求解这几类分数阶比例延迟方程是高效的.同时,也为分数阶泛函微分方程的数值算法提供新的研究思路.  相似文献   

6.
解空间Riesz分数阶扩散方程的一种数值方法   总被引:3,自引:0,他引:3  
1 引言分数阶微分方程与整数阶(传统)微分方程一样古老[3],它是方程中含有非整数阶导数,在描述各种各样物质的记忆和遗传性质时[4],分数阶导数起着重要的作用.近年来, 分数阶微分方程已广泛应用到众多领域[3],空间分数阶偏微分方程常用于反常扩散模型 [2].近年来众多学者纷纷研究分数阶微分方程,然而关于分数阶偏微分方程数值方法的研  相似文献   

7.
1引言近年来,分数阶延迟微分方程因其能够准确地描述反常次扩散现象、超反常扩散现象和多孔介质问题等在力学、物理、电气工程、控制理论等学科中的应用较为广泛.因此,研究者们针对该方程做了大量的研究且取得了丰富的研究成果,比如:2011年,Bhalekar和Daftardargejji[1]扩展了Adams-Bashforth-Moulton算法来求解分数阶延迟微分方程.  相似文献   

8.
本文研究了一类新的模型问题:非线性随机分数阶延迟积分微分方程.当方程中的漂移项和扩散项满足全局Lipschitz条件和线性增长条件时,基于压缩映射原理给出了该方程解存在唯一的充分条件.由于理论求解的困难,构造了一种数值方法(Euler-Maruyama方法),并证得强收敛阶为α-1/2,α∈(1/2,1].最后通过数值试验,验证了这一理论结果.  相似文献   

9.
朱梦姣  王文强 《计算数学》2021,43(1):87-109
论文首先证明了非线性随机分数阶微分方程解的存在唯一性, 然后构造了数值求解该方程的Euler 方法, 并证明了当方程满足一定约束条件时, 该方法是弱收敛的. 特别地, 当分数阶α=0时, 该方程退化为非线性随机微分方程, 所获结论与现有文献中的相关结论是一致的; 当α ≠ 0, 且初值条件为齐次时, 所获结论可视为现有文献中线性随机分数阶微分方程情形的推广和改进. 随后, 文末的数值试验验证了所获理论结果的正确性.  相似文献   

10.
研究时间Caputo分数阶对流扩散方程的高效高阶数值方法.对于给定的时间分数阶偏微分方程,在时间和空间方向分别采用基于移位广义Jacobi函数为基底和移位Chebyshev多项式运算矩阵的谱配置法进行数值求解.这样得到的数值解可以很好地逼近一类在时间方向非光滑的方程解.最后利用一些数值例子来说明该数值方法的有效性和准确性.  相似文献   

11.
Diffusion equations that use time fractional derivatives are attractive because they describe a wealth of problems involving non-Markovian Random walks. The time fractional diffusion equation (TFDE) is obtained from the standard diffusion equation by replacing the first-order time derivative with a fractional derivative of order α? (0,1). Developing numerical methods for solving fractional partial differential equations is a new research field and the theoretical analysis of the numerical methods associated with them is not fully developed. In this paper an explicit conservative difference approximation (ECDA) for TFDE is proposed. We give a detailed analysis for this ECDA and generate discrete models of random walk suitable for simulating random variables whose spatial probability density evolves in time according to this fractional diffusion equation. The stability and convergence of the ECDA for TFDE in a bounded domain are discussed. Finally, some numerical examples are presented to show the application of the present technique.  相似文献   

12.
A number of mathematical models investigating certain aspects of the complicated process of wound healing are reported in the literature in recent years. However, effective numerical methods and supporting error analysis for the fractional equations which describe the process of wound healing are still limited. In this paper, we consider the numerical simulation of a fractional mathematical model of epidermal wound healing (FMM-EWH), which is based on the coupled advection-diffusion equations for cell and chemical concentration in a polar coordinate system. The space fractional derivatives are defined in the Left and Right Riemann-Liouville sense. Fractional orders in the advection and diffusion terms belong to the intervals (0,1) or (1,2], respectively. Some numerical techniques will be used. Firstly, the coupled advection-diffusion equations are decoupled to a single space fractional advection-diffusion equation in a polar coordinate system. Secondly, we propose a new implicit difference method for simulating this equation by using the equivalent of Riemann-Liouville and Grünwald-Letnikov fractional derivative definitions. Thirdly, its stability and convergence are discussed, respectively. Finally, some numerical results are given to demonstrate the theoretical analysis.  相似文献   

13.
Since 1965, there has been significant progress in the theoretical study on quasi-Newton methods for solving nonlinear equations, especially in the local convergence analysis. However, the study on global convergence of quasi-Newton methods is relatively fewer, especially for the BFGS method. To ensure global convergence, some merit function such as the squared norm merit function is typically used. In this paper, we propose an algorithm for solving nonlinear monotone equations, which combines the BFGS method and the hyperplane projection method. We also prove that the proposed BFGS method converges globally if the equation is monotone and Lipschitz continuous without differentiability requirement on the equation, which makes it possible to solve some nonsmooth equations. An attractive property of the proposed method is that its global convergence is independent of any merit function.We also report some numerical results to show efficiency of the proposed method.

  相似文献   


14.
Fractional calculus is an extension of derivatives and integrals to non-integer orders, and a partial differential equation involving the fractional calculus operators is called the fractional PDE. They have many applications in science and engineering. However not only the analytical solution existed for a limited number of cases, but also the numerical methods are very complicated and difficult. In this paper, we newly establish the simulation method based on the operational matrices of the orthogonal functions. We formulate the operational matrix of integration in a unified framework. By using the operational matrix of integration, we propose a new numerical method for linear fractional partial differential equation solving. In the method, we (1) use the Haar wavelet; (2) establish a Lyapunov-type matrix equation; and (3) obtain the algebraic equations suitable for computer programming. Two examples are given to demonstrate the simplicity, clarity and powerfulness of the new method.  相似文献   

15.
Some regularity properties of the solution of linear multi-term fractional differential equations are derived. Based on these properties, the numerical solution of such equations by piecewise polynomial collocation methods is discussed. The results obtained in this paper extend the results of Pedas and Tamme (2011) [15] where we have assumed that in the fractional differential equation the order of the highest derivative of the unknown function is an integer. In the present paper, we study the attainable order of convergence of spline collocation methods for solving general linear fractional differential equations using Caputo form of the fractional derivatives and show how the convergence rate depends on the choice of the grid and collocation points. Theoretical results are verified by some numerical examples.  相似文献   

16.
Some regularity properties of the solution of linear multi-term fractional differential equations are derived. Based on these properties, the numerical solution of such equations by piecewise polynomial collocation methods is discussed. The results obtained in this paper extend the results of Pedas and Tamme (2011) [15] where we have assumed that in the fractional differential equation the order of the highest derivative of the unknown function is an integer. In the present paper, we study the attainable order of convergence of spline collocation methods for solving general linear fractional differential equations using Caputo form of the fractional derivatives and show how the convergence rate depends on the choice of the grid and collocation points. Theoretical results are verified by some numerical examples.  相似文献   

17.
In this paper, the initial value problem for a class of fractional differential equations is discussed, which generalizes the existent result to a wide class of fractional differential equations. Also the theoretical result established in the paper ensures the validity of chaos control of fractional differential equations. In particular, feed-back control of chaotic fractional differential equation is theoretically investigated and the fractional Lorenz system as a numerical example is further provided to verify the analytical result.  相似文献   

18.
计算流体力学中的谱方法   总被引:1,自引:0,他引:1  
本文论及偏微分方程数值解中的谱方法的理论基础和数值实现.评述近年来有关谱方法的最主要的几个研究领域,着重讨论区域分解技术,不同数学模型的耦合以及不同离散方法的耦合问题,并介绍一些最新结果.  相似文献   

19.
In this paper, the Legendre spectral collocation method (LSCM) is applied for the solution of the fractional Bratu's equation. It shows the high accuracy and low computational cost of the LSCM compared with some other numerical methods. The fractional Bratu differential equation is transformed into a nonlinear system of algebraic equations for the unknown Legendre coefficients and solved with some spectral collocation methods. Some illustrative examples are also given to show the validity and applicability of this method, and the obtained results are compared with the existing studies to highlight its high efficiency and neglectable error.  相似文献   

20.
赵卫东 《计算数学》2015,37(4):337-373
1990年,Pardoux和Peng(彭实戈)解决了非线性倒向随机微分方程(backward stochastic differential equation,BSDE)解的存在唯一性问题,从而建立了正倒向随机微分方程组(forward backward stochastic differential equations,FBSDEs)的理论基础;之后,正倒向随机微分方程组得到了广泛研究,并被应用于众多研究领域中,如随机最优控制、偏微分方程、金融数学、风险度量、非线性期望等.近年来,正倒向随机微分方程组的数值求解研究获得了越来越多的关注,本文旨在基于正倒向随机微分方程组的特性,介绍正倒向随机微分方程组的主要数值求解方法.我们将重点介绍讨论求解FBSDEs的积分离散法和微分近似法,包括一步法和多步法,以及相应的数值分析和理论分析结果.微分近似法能构造出求解全耦合FBSDEs的高效高精度并行数值方法,并且该方法采用最简单的Euler方法求解正向随机微分方程,极大地简化了问题求解的复杂度.文章最后,我们尝试提出关于FBSDEs数值求解研究面临的一些亟待解决和具有挑战性的问题.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号