首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In Finsler geometry, minimal surfaces with respect to the Busemann-Hausdorff measure and the Holmes-Thompson measure are called BH-minimal and HT-minimal surfaces, respectively. In this paper, we give the explicit expressions of BH-minimal and HT-minimal rotational hypersurfaces generated by plane curves rotating around the axis in the direction of [(b)\tilde]\sharp{\tilde{\beta}^{\sharp}} in Minkowski (α, β)-space (\mathbbVn+1,[(Fb)\tilde]){(\mathbb{V}^{n+1},\tilde{F_b})} , where \mathbbVn+1{\mathbb{V}^{n+1}} is an (n+1)-dimensional real vector space, [(Fb)\tilde]=[(a)\tilde]f([(b)\tilde]/[(a)\tilde]), [(a)\tilde]{\tilde{F_b}=\tilde{\alpha}\phi(\tilde{\beta}/\tilde{\alpha}), \tilde{\alpha}} is the Euclidean metric, [(b)\tilde]{\tilde{\beta}} is a one form of constant length b:=||[(b)\tilde]||[(a)\tilde], [(b)\tilde]\sharp{b:=\|\tilde{\beta}\|_{\tilde{\alpha}}, \tilde{\beta}^{\sharp}} is the dual vector of [(b)\tilde]{\tilde{\beta}} with respect to [(a)\tilde]{\tilde{\alpha}} . As an application, we first give the explicit expressions of the forward complete BH-minimal rotational surfaces generated around the axis in the direction of [(b)\tilde]\sharp{\tilde{\beta}^{\sharp}} in Minkowski Randers 3-space (\mathbbV3,[(a)\tilde]+[(b)\tilde]){(\mathbb{V}^{3},\tilde{\alpha}+\tilde{\beta})} .  相似文献   

2.
In this paper we present homogenization results for elliptic degenerate differential equations describing strongly anisotropic media. More precisely, we study the limit as e? 0 \epsilon \to 0 of the following Dirichlet problems with rapidly oscillating periodic coefficients:¶¶ . \cases {{ -div(\alpha(\frac{x}{\epsilon}}, \nabla u) A(\frac{x}{\epsilon}) \nabla u) = f(x) \in L^{\infty}(\Omega) \atop u = 0 su \eth\Omega\ } ¶¶where, p > 1,     a: \Bbb Rn ×\Bbb Rn ? \Bbb R,     a(y,x) ? áA(y)x,x?p/2-1, A ? Mn ×n(\Bbb R) p>1, \quad \alpha : \Bbb R^n \times \Bbb R^n \to \Bbb R, \quad \alpha(y,\xi) \approx \langle A(y)\xi,\xi \rangle ^{p/2-1}, A \in M^{n \times n}(\Bbb R) , A being a measurable periodic matrix such that At(x) = A(x) 3 0A^t(x) = A(x) \ge 0 almost everywhere.¶¶The anisotropy of the medium is described by the following structure hypothesis on the matrix A:¶¶l2/p(x) |x|2 £ áA(x)x,x? £ L 2/p(x) |x|2, \lambda^{2/p}(x) |\xi|^2 \leq \langle A(x)\xi,\xi \rangle \leq \Lambda ^{2/p}(x) |\xi|^2, ¶¶where the weight functions l \lambda and L \Lambda (satisfying suitable summability assumptions) can vanish or blow up, and can also be "moderately" different. The convergence to the homogenized problem is obtained by a classical compensated compactness argument, that had to be extended to two-weight Sobolev spaces.  相似文献   

3.
The holomorphic functions of several complex variables are closely related to the continuously differentiable solutions $f : {\mathbb{R}}^{2n} \mapsto {\mathbb{C}}_{n}$f : {\mathbb{R}}^{2n} \mapsto {\mathbb{C}}_{n} of the so called isotonic system
?x1 + i [(f)\tilde] ?x 2 = 0\partial _{\underbar{x}_1 } + i \tilde{f} \mathop{\partial _{\underbar{x} _2 } = 0}  相似文献   

4.
We prove that the generalized Temperley–Lieb algebras associated with simple graphs Γ have linear growth if and only if the graph Γ coincides with one of the extended Dynkin graphs [(A)\tilde]n {\tilde A_n} , [(D)\tilde]n {\tilde D_n} , [(E)\tilde]6 {\tilde E_6} , or [(E)\tilde]7 {\tilde E_7} . An algebra TLG, t T{L_{\Gamma, \tau }} has exponential growth if and only if the graph Γ coincides with none of the graphs An {A_n} , Dn {D_n} , En {E_n} , [(A)\tilde]n {\tilde A_n} , [(D)\tilde]n {\tilde D_n} , [(E)\tilde]6 {\tilde E_6} , and [(E)\tilde]7 {\tilde E_7} .  相似文献   

5.
A generalized Hlawka's inequality says that for any n (\geqq 2) (\geqq 2) complex numbers¶ x1, x2, ..., xn,¶¶ ?i=1n|xi - ?j=1nxj| \leqq ?i=1n|xi| + (n - 2)|?j=1nxj|. \sum_{i=1}^n\Bigg|x_i - \sum_{j=1}^{n}x_j\Bigg| \leqq \sum_{i=1}^{n}|x_i| + (n - 2)\Bigg|\sum_{j=1}^{n}x_j\Bigg|. ¶¶ We generalize this inequality to the trace norm and the trace of an n x n matrix A as¶¶ ||A - Tr A ||1 \leqq ||A||1 + (n - 2)| Tr A|. ||A - {\rm Tr} A ||_1\ \leqq ||A||_1 + (n - 2)| {\rm Tr} A|. ¶¶ We consider also the related inequalities for p-norms (1 \leqq p \leqq ¥) (1 \leqq p \leqq \infty) on matrices.  相似文献   

6.
Given two maps h : X ×K ? \mathbbR{h : X \times K \rightarrow \mathbb{R}} and g : XK such that, for all x ? X, h(x, g(x)) = 0{x \in X, h(x, g(x)) = 0} , we consider the equilibrium problem of finding [(x)\tilde] ? X{\tilde{x} \in X} such that h([(x)\tilde], g(x)) 3 0{h(\tilde{x}, g(x)) \geq 0} for every x ? X{x \in X} . This question is related to a coincidence problem.  相似文献   

7.
Let \mathbbF\mathbb{F} be a p-adic field, let χ be a character of \mathbbF*\mathbb{F}^{*}, let ψ be a character of \mathbbF\mathbb{F} and let gy-1\gamma_{\psi}^{-1} be the normalized Weil factor associated with a character of second degree. We prove here that one can define a meromorphic function [(g)\tilde](c,s,y)\widetilde{\gamma}(\chi ,s,\psi) via a similar functional equation to the one used for the definition of the Tate γ-factor replacing the role of the Fourier transform with an integration against y·gy-1\psi\cdot\gamma_{\psi}^{-1}. It turns out that γ and [(g)\tilde]\widetilde{\gamma} have similar integral representations. Furthermore, [(g)\tilde]\widetilde{\gamma} has a relation to Shahidi‘s metaplectic local coefficient which is similar to the relation γ has with (the non-metalpectic) Shahidi‘s local coefficient. Up to an exponential factor, [(g)\tilde](c,s,y)\widetilde{\gamma}(\chi,s,\psi) is equal to the ratio \fracg(c2,2s,y)g(c,s+\frac12,y)\frac{\gamma(\chi^{2},2s,\psi)}{\gamma(\chi,s+\frac{1}{2},\psi)}.  相似文献   

8.
Summary. Let \Bbb K {\Bbb K} be either the field of reals or the field of complex numbers, X be an F-space (i.e. a Fréchet space) over \Bbb K {\Bbb K} n be a positive integer, and f : X ? \Bbb K f : X \to {\Bbb K} be a solution of the functional equation¶¶f(x + f(x)n y) = f(x) f(y) f(x + f(x)^n y) = f(x) f(y) .¶We prove that, if there is a real positive a such that the set { x ? X : |f(x)| ? (0, a)} \{ x \in X : |f(x)| \in (0, a)\} contains a subset of second category and with the Baire property, then f is continuous or { x ? X : |f(x)| ? (0, a)} \{ x \in X : |f(x)| \in (0, a)\} for every x ? X x \in X . As a consequence of this we obtain the following fact: Every Baire measurable solution f : X ? \Bbb K f : X \to {\Bbb K} of the equation is continuous or equal zero almost everywhere (i.e., there is a first category set A ì X A \subset X with f(X \A) = { 0 }) f(X \backslash A) = \{ 0 \}) .  相似文献   

9.
For each integer n l(n)=[(log n)/(log g(n))]\lambda(n)={{\rm log}\, n\over{\rm log}\, \gamma(n)} be the index of composition of n, where g(n)=?p|np\gamma(n)=\prod_{p\vert n}p . For convenience, we write ?xnx+?xl(n)\sum_{x\le n\le x+\sqrt{x}}\lambda(n) and ?nxl(n)\sum_{n\le x}\lambda(n) , as well as for ?xnx+?x1/l(n)\sum_{x\le n\le x+\sqrt{x}}1/\lambda(n) and ?nx1/l(n)\sum_{n\le x}1/\lambda(n) . Finally we study the sum of running over shifted primes.  相似文献   

10.
We define a generalized Li coefficient for the L-functions attached to the Rankin–Selberg convolution of two cuspidal unitary automorphic representations π and π of GLm(\mathbbAF)GL_{m}(\mathbb{A}_{F}) and GLm(\mathbbAF)GL_{m^{\prime }}(\mathbb{A}_{F}) . Using the explicit formula, we obtain an arithmetic representation of the n th Li coefficient lp,p(n)\lambda _{\pi ,\pi ^{\prime }}(n) attached to L(s,pf×[(p)\tilde]f)L(s,\pi _{f}\times \widetilde{\pi}_{f}^{\prime }) . Then, we deduce a full asymptotic expansion of the archimedean contribution to lp,p(n)\lambda _{\pi ,\pi ^{\prime }}(n) and investigate the contribution of the finite (non-archimedean) term. Under the generalized Riemann hypothesis (GRH) on non-trivial zeros of L(s,pf×[(p)\tilde]f)L(s,\pi _{f}\times \widetilde{\pi}_{f}^{\prime }) , the nth Li coefficient lp,p(n)\lambda _{\pi ,\pi ^{\prime }}(n) is evaluated in a different way and it is shown that GRH implies the bound towards a generalized Ramanujan conjecture for the archimedean Langlands parameters μ π (v,j) of π. Namely, we prove that under GRH for L(s,pf×[(p)\tilde]f)L(s,\pi _{f}\times \widetilde{\pi}_{f}) one has |Remp(v,j)| £ \frac14|\mathop {\mathrm {Re}}\mu_{\pi}(v,j)|\leq \frac{1}{4} for all archimedean places v at which π is unramified and all j=1,…,m.  相似文献   

11.
Summary. Let K and [`(K)] \overline K be fields containing \Bbb Q {\Bbb Q} . We characterize pairs of additive functions f,g: K ?[`(K)] f,g: K \to \overline K satisfying a functional equation¶¶ g(xln) = f(xl)n     \textrespectively        g(xln) = Axln + xln-lf(xl) g(x^{ln}) = f(x^l)^n \quad \text{respectively} \qquad g(x^{ln}) = Ax^{ln} + x^{ln-l}f(x^l) ,¶where n ? \Bbb Z \{0,1} n \in {\Bbb Z} \setminus \{0,1\} , l ? \Bbb N l\in {\Bbb N} and A ? K A \in K .  相似文献   

12.
Summary. Let F, Y \Phi, \Psi be strictly monotonic continuous functions, F,G be positive functions on an interval I and let n ? \Bbb N \{1} n \in {\Bbb N} \setminus \{1\} . The functional equation¶¶F-1 ([(?i=1nF(xi)F(xi))/(?i=1n F(xi)]) Y-1 ([(?i=1nY(xi)G(xi))/(?i=1n G(xi))])  (x1,?,xn ? I) \Phi^{-1}\,\left({\sum\limits_{i=1}^{n}\Phi(x_{i})F(x_{i})\over\sum\limits_{i=1}^{n} F(x_{i}}\right) \Psi^{-1}\,\left({\sum\limits_{i=1}^{n}\Psi(x_{i})G(x_{i})\over\sum\limits_{i=1}^{n} G(x_{i})}\right)\,\,(x_{1},\ldots,x_{n} \in I) ¶was solved by Bajraktarevi' [3] for a fixed n 3 3 n\ge 3 . Assuming that the functions involved are twice differentiable he proved that the above functional equation holds if and only if¶¶Y(x) = [(aF(x) + b)/(cF(x) + d)],       G(x) = kF(x)(cF(x) + d) \Psi(x) = {a\Phi(x)\,+\,b\over c\Phi(x)\,+\,d},\qquad G(x) = kF(x)(c\Phi(x) + d) ¶where a,b,c,d,k are arbitrary constants with k(c2+d2)(ad-bc) 1 0 k(c^2+d^2)(ad-bc)\ne 0 . Supposing the functional equation for all n = 2,3,... n = 2,3,\dots Aczél and Daróczy [2] obtained the same result without differentiability conditions.¶The case of fixed n = 2 is, as in many similar problems, much more difficult and allows considerably more solutions. Here we assume only that the same functional equation is satisfied for n = 2 and solve it under the supposition that the functions involved are six times differentiable. Our main tool is the deduction of a sixth order differential equation for the function j = F°Y-1 \varphi = \Phi\circ\Psi^{-1} . We get 32 new families of solutions.  相似文献   

13.
In 1921, Blichfeldt gave an upper bound on the number of integral points contained in a convex body in terms of the volume of the body. More precisely, he showed that #(K?\Bbb Zn) £ n! vol(K)+n\#(K\cap{\Bbb Z}^n)\le n! {\rm vol}(K)+n , whenever K ì \Bbb RnK\subset{\Bbb R}^n is a convex body containing n + 1 affinely independent integral points. Here we prove an analogous inequality with respect to the surface area F(K), namely #(K?\Bbb Zn) < vol(K) + ((?n+1)/2) (n-1)! F(K)\#(K\cap{\Bbb Z}^n) < {\rm vol}(K) + ((\sqrt{n}+1)/2) (n-1)! {\rm F}(K) . The proof is based on a slight improvement of Blichfeldt’s bound in the case when K is a non-lattice translate of a lattice polytope, i.e., K = t + P, where t ? \Bbb Rn\\Bbb Znt\in{\Bbb R}^n\setminus{\Bbb Z}^n and P is an n-dimensional polytope with integral vertices. Then we have #((t+P)?\Bbb Zn) £ n! vol(P)\#((t+P)\cap{\Bbb Z}^n)\le n! {\rm vol}(P) . Moreover, in the 3-dimensional case we prove a stronger inequality, namely #(K?\Bbb Zn) < vol(K) + 2 F(K)\#(K\cap{\Bbb Z}^n)< {\rm vol}(K) + 2 {\rm F}(K) .  相似文献   

14.
Let Ω be a domain in ${\mathbb{C}^{2}}Let Ω be a domain in \mathbbC2{\mathbb{C}^{2}}, and let p: [(W)\tilde]? \mathbbC2{\pi: \tilde{\Omega}\rightarrow \mathbb{C}^{2}} be its envelope of holomorphy. Also let W¢=p([(W)\tilde]){\Omega'=\pi(\tilde{\Omega})} with i: W\hookrightarrow W¢{i: \Omega \hookrightarrow \Omega'} the inclusion. We prove the following: if the induced map on fundamental groups i*:p1(W) ? p1(W¢){i_{*}:\pi_{1}(\Omega) \rightarrow \pi_{1}(\Omega')} is a surjection, and if π is a covering map, then Ω has a schlicht envelope of holomorphy. We then relate this to earlier work of Fornaess and Zame.  相似文献   

15.
We solve the truncated complex moment problem for measures supported on the variety K o \mathcal{K}\equiv { z ? \in C: z [(z)\tilde]\widetilde{z} = A+Bz+C [(z)\tilde]\widetilde{z} +Dz 2 ,D 1 \neq 0}. Given a doubly indexed finite sequence of complex numbers g o g(2n):g00,g01,g10,?,g0,2n,g1,2n-1,?,g2n-1,1,g2n,0 \gamma\equiv\gamma^{(2n)}:\gamma_{00},\gamma_{01},\gamma_{10},\ldots,\gamma_{0,2n},\gamma_{1,2n-1},\ldots,\gamma_{2n-1,1},\gamma_{2n,0} , there exists a positive Borel measure m\mu supported in K \mathcal{K} such that gij=ò[`(z)]izj dm (0 £ 1+j £ 2n) \gamma_{ij}=\int\overline{z}^{i}z^{j}\,d\mu\,(0\leq1+j\leq2n) if and only if the moment matrix M(n)( g\gamma ) is positive, recursively generated, with a column dependence relation Z [(Z)\tilde]\widetilde{Z} = A1+BZ +C [(Z)\tilde]\widetilde{Z} +DZ 2, and card V(g) 3\mathcal{V}(\gamma)\geq rank M(n), where V(g)\mathcal{V}(\gamma) is the variety associated to g \gamma . The last condition may be replaced by the condition that there exists a complex number gn,n+1 \gamma_{n,n+1} satisfying gn+1,n o [`(g)]n,n+1=Agn,n-1+Bgn,n+Cgn+1,n-1+Dgn,n+1 \gamma_{n+1,n}\equiv\overline{\gamma}_{n,n+1}=A\gamma_{n,n-1}+B\gamma_{n,n}+C\gamma_{n+1,n-1}+D\gamma_{n,n+1} . We combine these results with a recent theorem of J. Stochel to solve the full complex moment problem for K \mathcal{K} , and we illustrate the connection between the truncated and full moment problems for other varieties as well, including the variety z k = p(z, [(Z)\tilde] \widetilde{Z} ), deg p < k.  相似文献   

16.
We show that for every n \geqq 4, 0 \leqq k \leqq n - 3, p ? (0, 3] n \geqq 4, 0 \leqq k \leqq n - 3, p \in (0, 3] and every origin-symmetric convex body K in \mathbbRn \mathbb{R}^n , the function ||x ||-k2 ||x ||-n+k+pK \parallel x \parallel^{-k}_{2} \parallel x \parallel^{-n+k+p}_{K} represents a positive definite distribution on \mathbbRn \mathbb{R}^n , where ||·||2 \parallel \cdot \parallel_{2} is the Euclidean norm and ||·||K \parallel \cdot \parallel_{K} is the Minkowski functional of K. We apply this fact to prove a result of Busemann-Petty type that the inequalities for the derivatives of order (n - 4) at zero of X-ray functions of two convex bodies imply the inequalities for the volume of average m-dimensional sections of these bodies for all 3 \leqq m \leqq n 3 \leqq m \leqq n . We also prove a sharp lower estimate for the maximal derivative of X-ray functions of the order (n - 4) at zero.  相似文献   

17.
In this paper, it is shown that the dual [(\textQord)\tilde]\mathfrakA \widetilde{\text{Qord}}\mathfrak{A} of the quasiorder lattice of any algebra \mathfrakA \mathfrak{A} is isomorphic to a sublattice of the topology lattice á( \mathfrakA ) \Im \left( \mathfrak{A} \right) . Further, if \mathfrakA \mathfrak{A} is a finite algebra, then [(\textQord)\tilde]\mathfrakA @ á( \mathfrakA ) \widetilde{\text{Qord}}\mathfrak{A} \cong \Im \left( \mathfrak{A} \right) . We give a sufficient condition for the lattices [(\textCon)\tilde]\mathfrakA\text, [(\textQord)\tilde]\mathfrakA \widetilde{\text{Con}}\mathfrak{A}{\text{,}} \widetilde{\text{Qord}}\mathfrak{A} , and á( \mathfrakA ) \Im \left( \mathfrak{A} \right) . to be pairwise isomorphic. These results are applied to investigate topology lattices and quasiorder lattices of unary algebras.  相似文献   

18.
The bigraded Frobenius characteristic of the Garsia-Haiman module M μ is known [7, 10] to be given by the modified Macdonald polynomial [(H)\tilde]m[X; q, t]{\tilde{H}_{\mu}[X; q, t]}. It follows from this that, for m\vdash n{\mu \vdash n} the symmetric polynomial ?p1 [(H)\tilde]m[X; q, t]{{\partial_{p1}} \tilde{H}_{\mu}[X; q, t]} is the bigraded Frobenius characteristic of the restriction of M μ from S n to S n-1. The theory of Macdonald polynomials gives explicit formulas for the coefficients c μ v occurring in the expansion ?p1 [(H)\tilde]m[X; q, t] = ?v ? mcmv [(H)\tilde]v[X; q, t]{{\partial_{p1}} \tilde{H}_{\mu}[X; q, t] = \sum_{v \to \mu}c_{\mu v} \tilde{H}_{v}[X; q, t]}. In particular, it follows from this formula that the bigraded Hilbert series F μ (q, t) of M μ may be calculated from the recursion Fm (q, t) = ?v ? mcmv Fv (q, t){F_\mu (q, t) = \sum_{v \to \mu}c_{\mu v} F_v (q, t)}. One of the frustrating problems of the theory of Macdonald polynomials has been to derive from this recursion that Fm(q, t) ? N[q, t]{F\mu (q, t) \in \mathbf{N}[q, t]}. This difficulty arises from the fact that the c μ v have rather intricate expressions as rational functions in q, t. We give here a new recursion, from which a new combinatorial formula for F μ (q, t) can be derived when μ is a two-column partition. The proof suggests a method for deriving an analogous formula in the general case. The method was successfully carried out for the hook case by Yoo in [15].  相似文献   

19.
We prove that the solution operators et (f, y){\cal e}_t (\phi , \psi ) for the nonlinear wave equations with supercritical nonlinearities are not Lipschitz mappings from a subset of the finite-energy space ([(H)\dot]1 ?Lr+1) ×L2(\dot {H}^1 \cap L_{\rho +1}) \times L_2 to [(H)\dot]sq\dot {H}^s_{q'} for t 1 0t\neq 0, and 0 £ s £ 1,0\leq s\leq 1, (n+1)/(1/2-1/q¢) = 1(n+1)/(1/2-1/q')= 1. This is in contrast to the subcritical case, where the corresponding operators are Lipschitz mappings ([3], [6]). Here et(f, y)=u(·, t){\cal e}_t(\phi , \psi )=u(\cdot , t), where u is a solution of {
?2tu-Dxu+ m2u+|u|r-1u=0,  t > 0,  x ? \Bbb Rn,
u|t=0(x)=f(x),
?tu|t=0(x)=y(x).
\left\{\matrix {\partial ^2_tu-\Delta _xu+ m^2u+|u|^{\rho -1}u=0, \, t>0, \, x \in {\Bbb R}^n,\cr u\vert _{t=0}(x)=\phi (x),\hfill\cr \partial _tu\vert _{t=0}(x)=\psi (x). \hfill}\right. where n 3 4, m 3 0n \geq 4, m\geq 0 and r > r* = (n+2)/(n-2)\rho >\rho ^\ast =(n+2)/(n-2) in the supercritical case.  相似文献   

20.
In this paper, we study the planar Hamiltonian system  = J (A(θ)x + ▽f(x, θ)), θ = ω, x ∈ R2 , θ∈ Td , where f is real analytic in x and θ, A(θ) is a 2 × 2 real analytic symmetric matrix, J = (1-1 ) and ω is a Diophantine vector. Under the assumption that the unperturbed system  = JA(θ)x, θ = ω is reducible and stable, we obtain a series of criteria for the stability and instability of the equilibrium of the perturbed system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号