首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In Finsler geometry, minimal surfaces with respect to the Busemann-Hausdorff measure and the Holmes-Thompson measure are called BH-minimal and HT-minimal surfaces, respectively. In this paper, we give the explicit expressions of BH-minimal and HT-minimal rotational hypersurfaces generated by plane curves rotating around the axis in the direction of [(b)\tilde]\sharp{\tilde{\beta}^{\sharp}} in Minkowski (α, β)-space (\mathbbVn+1,[(Fb)\tilde]){(\mathbb{V}^{n+1},\tilde{F_b})} , where \mathbbVn+1{\mathbb{V}^{n+1}} is an (n+1)-dimensional real vector space, [(Fb)\tilde]=[(a)\tilde]f([(b)\tilde]/[(a)\tilde]), [(a)\tilde]{\tilde{F_b}=\tilde{\alpha}\phi(\tilde{\beta}/\tilde{\alpha}), \tilde{\alpha}} is the Euclidean metric, [(b)\tilde]{\tilde{\beta}} is a one form of constant length b:=||[(b)\tilde]||[(a)\tilde], [(b)\tilde]\sharp{b:=\|\tilde{\beta}\|_{\tilde{\alpha}}, \tilde{\beta}^{\sharp}} is the dual vector of [(b)\tilde]{\tilde{\beta}} with respect to [(a)\tilde]{\tilde{\alpha}} . As an application, we first give the explicit expressions of the forward complete BH-minimal rotational surfaces generated around the axis in the direction of [(b)\tilde]\sharp{\tilde{\beta}^{\sharp}} in Minkowski Randers 3-space (\mathbbV3,[(a)\tilde]+[(b)\tilde]){(\mathbb{V}^{3},\tilde{\alpha}+\tilde{\beta})} .  相似文献   

2.
We define a generalized Li coefficient for the L-functions attached to the Rankin–Selberg convolution of two cuspidal unitary automorphic representations π and π of GLm(\mathbbAF)GL_{m}(\mathbb{A}_{F}) and GLm(\mathbbAF)GL_{m^{\prime }}(\mathbb{A}_{F}) . Using the explicit formula, we obtain an arithmetic representation of the n th Li coefficient lp,p(n)\lambda _{\pi ,\pi ^{\prime }}(n) attached to L(s,pf×[(p)\tilde]f)L(s,\pi _{f}\times \widetilde{\pi}_{f}^{\prime }) . Then, we deduce a full asymptotic expansion of the archimedean contribution to lp,p(n)\lambda _{\pi ,\pi ^{\prime }}(n) and investigate the contribution of the finite (non-archimedean) term. Under the generalized Riemann hypothesis (GRH) on non-trivial zeros of L(s,pf×[(p)\tilde]f)L(s,\pi _{f}\times \widetilde{\pi}_{f}^{\prime }) , the nth Li coefficient lp,p(n)\lambda _{\pi ,\pi ^{\prime }}(n) is evaluated in a different way and it is shown that GRH implies the bound towards a generalized Ramanujan conjecture for the archimedean Langlands parameters μ π (v,j) of π. Namely, we prove that under GRH for L(s,pf×[(p)\tilde]f)L(s,\pi _{f}\times \widetilde{\pi}_{f}) one has |Remp(v,j)| £ \frac14|\mathop {\mathrm {Re}}\mu_{\pi}(v,j)|\leq \frac{1}{4} for all archimedean places v at which π is unramified and all j=1,…,m.  相似文献   

3.
We solve the truncated complex moment problem for measures supported on the variety K o \mathcal{K}\equiv { z ? \in C: z [(z)\tilde]\widetilde{z} = A+Bz+C [(z)\tilde]\widetilde{z} +Dz 2 ,D 1 \neq 0}. Given a doubly indexed finite sequence of complex numbers g o g(2n):g00,g01,g10,?,g0,2n,g1,2n-1,?,g2n-1,1,g2n,0 \gamma\equiv\gamma^{(2n)}:\gamma_{00},\gamma_{01},\gamma_{10},\ldots,\gamma_{0,2n},\gamma_{1,2n-1},\ldots,\gamma_{2n-1,1},\gamma_{2n,0} , there exists a positive Borel measure m\mu supported in K \mathcal{K} such that gij=ò[`(z)]izj dm (0 £ 1+j £ 2n) \gamma_{ij}=\int\overline{z}^{i}z^{j}\,d\mu\,(0\leq1+j\leq2n) if and only if the moment matrix M(n)( g\gamma ) is positive, recursively generated, with a column dependence relation Z [(Z)\tilde]\widetilde{Z} = A1+BZ +C [(Z)\tilde]\widetilde{Z} +DZ 2, and card V(g) 3\mathcal{V}(\gamma)\geq rank M(n), where V(g)\mathcal{V}(\gamma) is the variety associated to g \gamma . The last condition may be replaced by the condition that there exists a complex number gn,n+1 \gamma_{n,n+1} satisfying gn+1,n o [`(g)]n,n+1=Agn,n-1+Bgn,n+Cgn+1,n-1+Dgn,n+1 \gamma_{n+1,n}\equiv\overline{\gamma}_{n,n+1}=A\gamma_{n,n-1}+B\gamma_{n,n}+C\gamma_{n+1,n-1}+D\gamma_{n,n+1} . We combine these results with a recent theorem of J. Stochel to solve the full complex moment problem for K \mathcal{K} , and we illustrate the connection between the truncated and full moment problems for other varieties as well, including the variety z k = p(z, [(Z)\tilde] \widetilde{Z} ), deg p < k.  相似文献   

4.
Let Ω be a domain in ${\mathbb{C}^{2}}Let Ω be a domain in \mathbbC2{\mathbb{C}^{2}}, and let p: [(W)\tilde]? \mathbbC2{\pi: \tilde{\Omega}\rightarrow \mathbb{C}^{2}} be its envelope of holomorphy. Also let W¢=p([(W)\tilde]){\Omega'=\pi(\tilde{\Omega})} with i: W\hookrightarrow W¢{i: \Omega \hookrightarrow \Omega'} the inclusion. We prove the following: if the induced map on fundamental groups i*:p1(W) ? p1(W¢){i_{*}:\pi_{1}(\Omega) \rightarrow \pi_{1}(\Omega')} is a surjection, and if π is a covering map, then Ω has a schlicht envelope of holomorphy. We then relate this to earlier work of Fornaess and Zame.  相似文献   

5.
In this paper, we reprove that: (i) the Aluthge transform of a complex symmetric operator [(T)\tilde] = |T|\frac12 U|T|\frac12\tilde{T} = |T|^{\frac{1}{2}} U|T|^{\frac{1}{2}} is complex symmetric, (ii) if T is a complex symmetric operator, then ([(T)\tilde])*(\tilde{T})^{*} and [(T*)\tilde]\widetilde{T^{*}} are unitarily equivalent. And we also prove that: (iii) if T is a complex symmetric operator, then [((T*))\tilde]s,t\widetilde{(T^{*})}_{s,t} and ([(T)\tilde]t,s)*(\tilde{T}_{t,s})^{*} are unitarily equivalent for s, t > 0, (iv) if a complex symmetric operator T belongs to class wA(t, t), then T is normal.  相似文献   

6.
The cohomology H \mathfrakg\mathfrak{g} ) of the tangent Lie algebra \mathfrakg\mathfrak{g} of the group G with coefficients in the one-dimensional representation \mathfrakg\mathfrak{g} \mathbbK\mathbb{K} defined by [(W)\tilde] \mathfrakg \tilde \Omega _\mathfrak{g} of H 1(G/ \mathfrakg\mathfrak{g} .  相似文献   

7.
In this paper, it is shown that the dual [(\textQord)\tilde]\mathfrakA \widetilde{\text{Qord}}\mathfrak{A} of the quasiorder lattice of any algebra \mathfrakA \mathfrak{A} is isomorphic to a sublattice of the topology lattice á( \mathfrakA ) \Im \left( \mathfrak{A} \right) . Further, if \mathfrakA \mathfrak{A} is a finite algebra, then [(\textQord)\tilde]\mathfrakA @ á( \mathfrakA ) \widetilde{\text{Qord}}\mathfrak{A} \cong \Im \left( \mathfrak{A} \right) . We give a sufficient condition for the lattices [(\textCon)\tilde]\mathfrakA\text, [(\textQord)\tilde]\mathfrakA \widetilde{\text{Con}}\mathfrak{A}{\text{,}} \widetilde{\text{Qord}}\mathfrak{A} , and á( \mathfrakA ) \Im \left( \mathfrak{A} \right) . to be pairwise isomorphic. These results are applied to investigate topology lattices and quasiorder lattices of unary algebras.  相似文献   

8.
Let ${s,\,\tau\in\mathbb{R}}Let s, t ? \mathbbR{s,\,\tau\in\mathbb{R}} and q ? (0,¥]{q\in(0,\infty]} . We introduce Besov-type spaces [(B)\dot]s, tpq(\mathbbRn){{{{\dot B}^{s,\,\tau}_{p,\,q}(\mathbb{R}^{n})}}} for p ? (0, ¥]{p\in(0,\,\infty]} and Triebel–Lizorkin-type spaces [(F)\dot]s, tpq(\mathbbRn) for p ? (0, ¥){{{{\dot F}^{s,\,\tau}_{p,\,q}(\mathbb{R}^{n})}}\,{\rm for}\, p\in(0,\,\infty)} , which unify and generalize the Besov spaces, Triebel–Lizorkin spaces and Q spaces. We then establish the j{\varphi} -transform characterization of these new spaces in the sense of Frazier and Jawerth. Using the j{\varphi} -transform characterization of [(B)\dot]s, tpq(\mathbbRn) and [(F)\dot]s, tpq(\mathbbRn){{{{\dot B}^{s,\,\tau}_{p,\,q}(\mathbb{R}^{n})}\, {\rm and}\, {{\dot F}^{s,\,\tau}_{p,\,q}(\mathbb{R}^{n})}}} , we obtain their embedding and lifting properties; moreover, for appropriate τ, we also establish the smooth atomic and molecular decomposition characterizations of [(B)\dot]s, tpq(\mathbbRn) and [(F)\dot]s, tpq(\mathbbRn){{{{\dot B}^{s,\,\tau}_{p,\,q}(\mathbb{R}^{n})}\,{\rm and}\, {{\dot F}^{s,\,\tau}_{p,\,q}(\mathbb{R}^{n})}}} . For s ? \mathbbR{s\in\mathbb{R}} , p ? (1, ¥), q ? [1, ¥){p\in(1,\,\infty), q\in[1,\,\infty)} and t ? [0, \frac1(max{pq})¢]{\tau\in[0,\,\frac{1}{(\max\{p,\,q\})'}]} , via the Hausdorff capacity, we introduce certain Hardy–Hausdorff spaces B[(H)\dot]s, tpq(\mathbbRn){{{{B\dot{H}^{s,\,\tau}_{p,\,q}(\mathbb{R}^{n})}}}} and prove that the dual space of B[(H)\dot]s, tpq(\mathbbRn){{{{B\dot{H}^{s,\,\tau}_{p,\,q}(\mathbb{R}^{n})}}}} is just [(B)\dot]-s, tp¢, q(\mathbbRn){\dot{B}^{-s,\,\tau}_{p',\,q'}(\mathbb{R}^{n})} , where t′ denotes the conjugate index of t ? (1,¥){t\in (1,\infty)} .  相似文献   

9.
Let (g, K)(k) be a CMC (vacuum) Einstein flow over a compact three-manifold Σ with non-positive Yamabe invariant (Y(Σ)). As noted by Fischer and Moncrief, the reduced volume ${\mathcal{V}(k)=\left(\frac{-k}{3}\right)^{3}{\rm Vol}_{g(k)}(\Sigma)}Let (g, K)(k) be a CMC (vacuum) Einstein flow over a compact three-manifold Σ with non-positive Yamabe invariant (Y(Σ)). As noted by Fischer and Moncrief, the reduced volume V(k)=(\frac-k3)3Volg(k)(S){\mathcal{V}(k)=\left(\frac{-k}{3}\right)^{3}{\rm Vol}_{g(k)}(\Sigma)} is monotonically decreasing in the expanding direction and bounded below by Vinf=(\frac-16Y(S))\frac32{\mathcal{V}_{\rm \inf}=\left(\frac{-1}{6}Y(\Sigma)\right)^{\frac{3}{2}}}. Inspired by this fact we define the ground state of the manifold Σ as “the limit” of any sequence of CMC states {(g i , K i )} satisfying: (i) k i  = −3, (ii) Viˉ Vinf{\mathcal{V}_{i}\downarrow \mathcal{V}_{\rm inf}}, (iii) Q 0((g i , K i )) ≤ Λ, where Q 0 is the Bel–Robinson energy and Λ is any arbitrary positive constant. We prove that (as a geometric state) the ground state is equivalent to the Thurston geometrization of Σ. Ground states classify naturally into three types. We provide examples for each class, including a new ground state (the Double Cusp) that we analyze in detail. Finally, consider a long time and cosmologically normalized flow ([(g)\tilde],[(K)\tilde])(s)=((\frac-k3)2g,(\frac-k3)K){(\tilde{g},\tilde{K})(\sigma)=\left(\left(\frac{-k}{3}\right)^{2}g,\left(\frac{-k}{3}\right)K\right)}, where s = -ln(-k) ? [a,¥){\sigma=-\ln (-k)\in [a,\infty)}. We prove that if [(E1)\tilde]=E1(([(g)\tilde],[(K)\tilde])) £ L{\tilde{\mathcal{E}_{1}}=\mathcal{E}_{1}((\tilde{g},\tilde{K}))\leq \Lambda} (where E1=Q0+Q1{\mathcal{E}_{1}=Q_{0}+Q_{1}}, is the sum of the zero and first order Bel–Robinson energies) the flow ([(g)\tilde],[(K)\tilde])(s){(\tilde{g},\tilde{K})(\sigma)} persistently geometrizes the three-manifold Σ and the geometrization is the ground state if Vˉ Vinf{\mathcal{V}\downarrow \mathcal{V}_{\rm inf}}.  相似文献   

10.
When X is a finite complex and p1X\pi_{1}X acts on \mathbbR2{\mathbb{R}}^2 by translations we give criteria involving H2X for an equivariant map F : [(X)\tilde] ? \mathbbR2F : \tilde{X} \rightarrow {\mathbb{R}}^2 to be onto. Following work of Manning and Shub, this leads to entropy bounds related to Shub’s entropy conjecture.  相似文献   

11.
Let Q be a finite quiver of type A n , n ≥ 1, D n , n ≥ 4, E 6, E 7 and E 8, σ ∈ Aut(Q), k be an algebraic closed field whose characteristic does not divide the order of σ. In this article, we prove that the dual quiver [(GQ)\tilde]\widetilde{\Gamma_{Q}} of the Auslander–Reiten quiver Γ Q of kQ, the Auslander–Reiten quiver of kQ#kás?kQ\#k\langle\sigma\rangle, and the Auslander–Reiten quiver G[(Q)\tilde]\Gamma_{\widetilde{Q}} of k[(Q)\tilde]k\widetilde{Q}, where [(Q)\tilde]\widetilde{Q} is the dual quiver of Q, are isomorphic.  相似文献   

12.
Let W ì \mathbb Cd{\Omega \subset{\mathbb C}^{d}} be an irreducible bounded symmetric domain of type (r, a, b) in its Harish–Chandra realization. We study Toeplitz operators Tng{T^{\nu}_{g}} with symbol g acting on the standard weighted Bergman space Hn2{H_\nu^2} over Ω with weight ν. Under some conditions on the weights ν and ν 0 we show that there exists C(ν, ν 0) > 0, such that the Berezin transform [(g)\tilde]n0{\tilde{g}_{\nu_{0}}} of g with respect to H2n0{H^2_{\nu_0}} satisfies:
\labele0||[(g)\tilde]n0||C(n,n0)||Tng||,\label{e0}\|\tilde{g}_{\nu_0}\|_\infty \leq C(\nu,\nu_0)\|T^\nu_g\|,  相似文献   

13.
Exact sequences of Feigin–Stoyanovsky’s type subspaces for affine Lie algebra \mathfraksl(l+1,\mathbbC)[\tilde]\mathfrak{sl}(l+1,\mathbb{C})^{\widetilde{}} lead to systems of recurrence relations for formal characters of those subspaces. By solving the corresponding system for \mathfraksl(3,\mathbbC)[\tilde]\mathfrak{sl}(3,\mathbb{C})^{\widetilde{}}, we obtain a new family of character formulas for all Feigin–Stoyanovsky’s type subspaces at the general level.  相似文献   

14.
On the assumption of the truth of the Riemann hypothesis for the Riemann zeta function we construct a class of modified von-Mangoldt functions with slightly better mean value properties than the well known function L\Lambda . For every e ? (0,1/2)\varepsilon \in (0,1/2) there is a [(L)\tilde] : \Bbb N ? \Bbb C\tilde {\Lambda} : \Bbb N \to \Bbb C such that¶ i) [(L)\tilde] (n) = L (n) (1 + O(n-1/4  logn))\tilde {\Lambda} (n) = \Lambda (n) (1 + O(n^{-1/4\,} \log n)) and¶ii) ?n \leqq x [(L)\tilde] (n) (1- [(n)/(x)]) = [(x)/2] + O(x1/4+e) (x \geqq 2).\sum \limits_{n \leqq x} \tilde {\Lambda} (n) \left(1- {{n}\over{x}}\right) = {{x}\over{2}} + O(x^{1/4+\varepsilon }) (x \geqq 2).¶Unfortunately, this does not lead to an improved error term estimation for the unweighted sum ?n \leqq x [(L)\tilde] (n)\sum \limits_{n \leqq x} \tilde {\Lambda} (n), which would be of importance for the distance between consecutive primes.  相似文献   

15.
The aim of this work is to show that the moduli space M 10 introduced by O’Grady is a 2-factorial variety. Namely, M 10 is the moduli space of semistable sheaves with Mukai vector v: = (2, 0, −2) in Hev(X,\mathbbZ){H^{ev}(X,\mathbb{Z})} on a projective K3 surface X. As a corollary to our construction, we show that the Donaldson morphism gives a Hodge isometry between v^{v^{\perp}} (sublattice of the Mukai lattice of X) and its image in H2 ([(M)\tilde]10, \mathbbZ){H^{2} (\widetilde{M}_{10}, \mathbb{Z})}, lattice with respect to the Beauville form of the 10-dimensional irreducible symplectic manifold [(M)\tilde]10{\widetilde{M}_{10}}, obtained as symplectic resolution of M 10. Similar results are shown for the moduli space M 6 introduced by O’Grady to produce its 6-dimensional example of irreducible symplectic variety.  相似文献   

16.
Given two maps h : X ×K ? \mathbbR{h : X \times K \rightarrow \mathbb{R}} and g : XK such that, for all x ? X, h(x, g(x)) = 0{x \in X, h(x, g(x)) = 0} , we consider the equilibrium problem of finding [(x)\tilde] ? X{\tilde{x} \in X} such that h([(x)\tilde], g(x)) 3 0{h(\tilde{x}, g(x)) \geq 0} for every x ? X{x \in X} . This question is related to a coincidence problem.  相似文献   

17.
In this paper, we study the planar Hamiltonian system  = J (A(θ)x + ▽f(x, θ)), θ = ω, x ∈ R2 , θ∈ Td , where f is real analytic in x and θ, A(θ) is a 2 × 2 real analytic symmetric matrix, J = (1-1 ) and ω is a Diophantine vector. Under the assumption that the unperturbed system  = JA(θ)x, θ = ω is reducible and stable, we obtain a series of criteria for the stability and instability of the equilibrium of the perturbed system.  相似文献   

18.
Let (M,[(g)\tilde]){(\mathcal {M},\tilde{g})} be an N-dimensional smooth compact Riemannian manifold. We consider the singularly perturbed Allen–Cahn equation
e2 D[(g)\tilde] u  +  (1 - u2 )u = 0     in  M,\varepsilon ^2 \Delta _{\tilde g} u \, + \, (1 - u^2 )u\, =\, 0 \quad {\rm{in}} \, \mathcal {M},  相似文献   

19.
20.
We generalize a Hilbert space result by Auscher, McIntosh and Nahmod to arbitrary Banach spaces X and to not densely defined injective sectorial operators A. A convenient tool proves to be a certain universal extrapolation space associated with A. We characterize the real interpolation space ( X,D( Aa ) ?R( Aa ) )q,p{\left( {X,\mathcal{D}{\left( {A^{\alpha } } \right)} \cap \mathcal{R}{\left( {A^{\alpha } } \right)}} \right)}_{{\theta ,p}} as
{ x  ?  X|t - q\textRea y1 ( tA )xt - q\textRea y2 ( tA )x ? L*p ( ( 0,¥ );X ) } {\left\{ {x\, \in \,X|t^{{ - \theta {\text{Re}}\alpha }} \psi _{1} {\left( {tA} \right)}x,\,t^{{ - \theta {\text{Re}}\alpha }} \psi _{2} {\left( {tA} \right)}x \in L_{*}^{p} {\left( {{\left( {0,\infty } \right)};X} \right)}} \right\}}  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号