首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
We prove that for any $ \varepsilon > 0 $ \varepsilon > 0 there is k (e) k (\varepsilon) such that for any prime p and any integer c there exist k \leqq k(e) k \leqq k(\varepsilon) pairwise distinct integers xi with 1 \leqq xi \leqq pe, i = 1, ?, k 1 \leqq x_{i} \leqq p^{\varepsilon}, i = 1, \ldots, k , and such that¶¶?i=1k [1/(xi)] o c    (mod p). \sum\limits_{i=1}^k {{1}\over{x_i}} \equiv c\quad (\mathrm{mod}\, p). ¶¶ This gives a positive answer to a question of Erdös and Graham.  相似文献   

2.
Let x1,..., xn be points in the d-dimensional Euclidean space Ed with || xi-xj|| £ 1\| x_{i}-x_{j}\| \le 1 for all 1 \leqq i,j \leqq n1 \leqq i,j \leqq n, where || .||\| .\| denotes the Euclidean norm. We ask for the maximum M(d,n) of \mathop?ij=1n|| xi-xj|| 2\textstyle\mathop\sum\limits _{i,\,j=1}^{n}\| x_{i}-x_{j}\| ^{2} (see [4]). This paper deals with the case d = 2. We calculate M(2, n) and show that the value M(2, n) is attained if and only if the points are distributed as evenly as possible among the vertices of a regular triangle of edge-length 1. Moreover we give an upper bound for the value \mathop?ij=1n|| xi-xj|| \textstyle\mathop\sum\limits _{i,\,j=1}^{n}\| x_{i}-x_{j}\| , where the points x1,...,xn are chosen under the same constraints as above.  相似文献   

3.
Let K be a convex body in \mathbbRn \mathbb{R}^n with volume |K| = 1 |K| = 1 . We choose N 3 n+1 N \geq n+1 points x1,?, xN x_1,\ldots, x_N independently and uniformly from K, and write C(x1,?, xN) C(x_1,\ldots, x_N) for their convex hull. Let f : \mathbbR+ ? \mathbbR+ f : \mathbb{R^+} \rightarrow \mathbb{R^+} be a continuous strictly increasing function and 0 £ in-1 0 \leq i \leq n-1 . Then, the quantity¶¶E (K, N, f °Wi) = òKK f[Wi(C(x1, ?, xN))]dxN ?dx1 E (K, N, f \circ W_{i}) = \int\limits_{K} \ldots \int\limits_{K} f[W_{i}(C(x_1, \ldots, x_N))]dx_{N} \ldots dx_1 ¶¶is minimal if K is a ball (Wi is the i-th quermassintegral of a compact convex set). If f is convex and strictly increasing and 1 £ in-1 1 \leq i \leq n-1 , then the ball is the only extremal body. These two facts generalize a result of H. Groemer on moments of the volume of C(x1,?, xN) C(x_1,\ldots, x_N) .  相似文献   

4.
Summary. It is shown that provided F and G are injective in every argument, the functional equation of generalized m ×n m \times n bisymmetry (m,n 3 2) (m,n \ge 2) ,¶¶ G(F1(x11, \hdots , x1n),\hdots , Fm(xm1,\hdots, xmn)) G(F_1(x_{11}, \hdots , x_{1n}),\hdots , F_m(x_{m1},\hdots, x_{mn})) ¶ = F(G1(x11,\hdots , xm1),\hdots , Gn(x1n,\hdots , xmn)) = F(G_1(x_{11},\hdots , x_{m1}),\hdots , G_n(x_{1n},\hdots , x_{mn})) ¶may be reduced to ¶¶ G([`(F)]1(u11, \hdots , u1n),\hdots ,[`(F)]m(um1,\hdots, umn)) G(\overline{F}_1(u_{11}, \hdots , u_{1n}),\hdots , \overline{F}_m(u_{m1},\hdots, u_{mn})) ¶ = F([`(G)]1(u11,\hdots , um1),\hdots ,[`(G)]n(u1n,\hdots , umn)) = F(\overline{G}_1(u_{11},\hdots , u_{m1}),\hdots ,\overline{G}_n(u_{1n},\hdots , u_{mn})) ¶where¶¶ Fi(xi1,\hdots , xin) = [`(F)]i (ji1(xi1),\hdots , jin(xin)), Gj(x1j, \hdots , xmj) = [`(G)]j(j1j (x1j),\hdots, jmj(xmj)) F_i(x_{i1},\hdots , x_{in}) = \overline{F}_i (\varphi_{i1}(x_{i1}),\hdots , \varphi_{in}(x_{in})), G_j(x_{1j}, \hdots , x_{mj}) = \overline{G}_j(\varphi_{1j} (x_{1j}),\hdots, \varphi_{mj}(x_{mj})) ,¶¶jij < /FORMULA > are surjections and < FORMULA > \varphi_{ij} are surjections and \overline{F}_i, \overline{G}_j < /FORMULA > are injective in every argument for all < FORMULA > are injective in every argument for all 1\le i \le m,\ 1\le j\le n $. The result is also shown to hold for a wider class of functional equations.  相似文献   

5.
A generalized Hlawka's inequality says that for any n (\geqq 2) (\geqq 2) complex numbers¶ x1, x2, ..., xn,¶¶ ?i=1n|xi - ?j=1nxj| \leqq ?i=1n|xi| + (n - 2)|?j=1nxj|. \sum_{i=1}^n\Bigg|x_i - \sum_{j=1}^{n}x_j\Bigg| \leqq \sum_{i=1}^{n}|x_i| + (n - 2)\Bigg|\sum_{j=1}^{n}x_j\Bigg|. ¶¶ We generalize this inequality to the trace norm and the trace of an n x n matrix A as¶¶ ||A - Tr A ||1 \leqq ||A||1 + (n - 2)| Tr A|. ||A - {\rm Tr} A ||_1\ \leqq ||A||_1 + (n - 2)| {\rm Tr} A|. ¶¶ We consider also the related inequalities for p-norms (1 \leqq p \leqq ¥) (1 \leqq p \leqq \infty) on matrices.  相似文献   

6.
Let n be an integer greater than 1, and let G be a group. A subset {x1, x2, ..., xn} of n elements of G is said to be rewritable if there are distinct permutations p \pi and s \sigma of {1, 2, ..., n} such that¶¶xp(1)xp(2) ?xp(n) = xs(1)xs(2) ?xs(n). x_{\pi(1)}x_{\pi(2)} \ldots x_{\pi(n)} = x_{\sigma(1)}x_{\sigma(2)} \ldots x_{\sigma(n)}. ¶¶A group is said to have the rewriting property Qn if every subset of n elements of the group is rewritable. In this paper we prove that a finite group of odd order has the property Q3 if and only if its derived subgroup has order not exceeding 5.  相似文献   

7.
Summary. The solution of the rectangular m ×n m \times n generalized bisymmetry equation¶¶F(G1(x11,...,x1n),..., Gm(xm1,...,xmn))     =     G(F1(x11,..., xm1),...,  Fn(x1n,...,xmn) ) F\bigl(G_1(x_{11},\dots,x_{1n}),\dots,\ G_m(x_{m1},\dots,x_{mn})\bigr) \quad = \quad G\bigl(F_1(x_{11},\dots, x_{m1}),\dots, \ F_n(x_{1n},\dots,x_{mn}) \bigr) (A)¶is presented assuming that the functions F, Gj, G and Fi (j = 1, ... , m , i = 1, ... , n , m S 2, n S 2) are real valued and defined on the Cartesian product of real intervals, and they are continuous and strictly monotonic in each real variable. Equation (A) is reduced to some special bisymmetry type equations by using induction methods. No surjectivity assumptions are made.  相似文献   

8.
Let C be a closed, convex subset of a uniformly convex Banach space whose norm is uniformly Gâteaux differentiable and let T be an asymptotically nonexpansive mapping from C into itself such that the set F (T) of fixed points of T is nonempty. Let {an} be a sequence of real numbers with 0 £ an £ 10 \leq a_n \leq 1, and let x and x0 be elements of C. In this paper, we study the convergence of the sequence {xn} defined by¶¶xn+1=an x + (1-an) [1/(n+1)] ?j=0n Tj xn   x_{n+1}=a_n x + (1-a_n) {1\over n+1} \sum\limits_{j=0}^n T^j x_n\quad for n=0,1,2,...  . n=0,1,2,\dots \,.  相似文献   

9.
For x = (x 1, x 2, …, x n ) ∈ (0, 1 ] n and r ∈ { 1, 2, … , n}, a symmetric function F n (x, r) is defined by the relation
Fn( x,r ) = Fn( x1,x2, ?, xn;r ) = ?1 \leqslant1 < i2 ?ir \leqslant n ?j = 1r \frac1 - xijxij , {F_n}\left( {x,r} \right) = {F_n}\left( {{x_1},{x_2}, \ldots, {x_n};r} \right) = \sum\limits_{1{ \leqslant_1} < {i_2} \ldots {i_r} \leqslant n} {\prod\limits_{j = 1}^r {\frac{{1 - {x_{{i_j}}}}}{{{x_{{i_j}}}}}} },  相似文献   

10.
Abstract. We prove the following result: Let X be a compact connected Hausdorff space and f be a continuous function on X x X. There exists some regular Borel probability measure m\mu on X such that the value of¶¶ ò\limit X f(x,y)dm(y)\int\limit _X f(x,y)d\mu (y) is independent of the choice of x in X if and only if the following assertion holds: For each positive integer n and for all (not necessarily distinct) x1,x2,...,xn,y1,y2,...,yn in X, there exists an x in X such that¶¶ ?i=1n f(xi,x)=?i=1n f(yi,x).\sum\limits _{i=1}^n f(x_i,x)=\sum\limits _{i=1}^n f(y_i,x).  相似文献   

11.
Let x1, ?, xn \xi_1, \ldots, \xi_n be random variables and U be a subset of the Cartesian product \mathbbZ+n, \mathbbZ+ \mathbb{Z}_+^n, \mathbb{Z}_+ being the set of all non-negative integers. The random variables are said to be strictly U-uncorrelated if¶¶E(x1j1 ?xnjn) = E(x1j1) ?E(xnjn) ? (j1, ... ,jn) ? U. \textbf {E}\big(\xi_1^{j_1} \cdots \xi_n^{j_n}\big) = \textbf {E}\big(\xi_1^{j_1}\big) \cdots \textbf {E}\big(\xi_n^{j_n}\big) \iff (j_1, \dots ,j_n) \in U. ¶It is proved that for an arbitrary subset U \subseteqq \mathbbZ+n U \subseteqq \mathbb{Z}_+^n containing all points with 0 or 1 non-zero coordinates there exists a collection of n strictly U-uncorrelated random variables.  相似文献   

12.
A polynomial P(X) with coefficients {ǃ} of odd degree N - 1 is cyclotomic if and only if¶¶P(X) = ±Fp1X)Fp2Xp1) ?FprXp1 p2 ?pr-1) P(X) = \pm \Phi_{p1} (\pm X)\Phi_{p2}(\pm X^{p1}) \cdots \Phi_{p_r}(\pm X^{p1 p2 \cdots p_r-1}) ¶where N = p1 p2 · · · pr and the pi are primes, not necessarily distinct, and where Fp(X) : = (Xp - 1) / (X - 1) \Phi_{p}(X) := (X^{p} - 1) / (X - 1) is the p-th cyclotomic polynomial. This is a conjecture of Borwein and Choi [1]. We prove this conjecture for a class of polynomials of degree N - 1 = 2r pl - 1 N - 1 = 2^{r} p^{\ell} - 1 for any odd prime p and for integers r, l\geqq 1 r, \ell \geqq 1 .  相似文献   

13.
Summary. Let K and [`(K)] \overline K be fields containing \Bbb Q {\Bbb Q} . We characterize pairs of additive functions f,g: K ?[`(K)] f,g: K \to \overline K satisfying a functional equation¶¶ g(xln) = f(xl)n     \textrespectively        g(xln) = Axln + xln-lf(xl) g(x^{ln}) = f(x^l)^n \quad \text{respectively} \qquad g(x^{ln}) = Ax^{ln} + x^{ln-l}f(x^l) ,¶where n ? \Bbb Z \{0,1} n \in {\Bbb Z} \setminus \{0,1\} , l ? \Bbb N l\in {\Bbb N} and A ? K A \in K .  相似文献   

14.
In this paper we present homogenization results for elliptic degenerate differential equations describing strongly anisotropic media. More precisely, we study the limit as e? 0 \epsilon \to 0 of the following Dirichlet problems with rapidly oscillating periodic coefficients:¶¶ . \cases {{ -div(\alpha(\frac{x}{\epsilon}}, \nabla u) A(\frac{x}{\epsilon}) \nabla u) = f(x) \in L^{\infty}(\Omega) \atop u = 0 su \eth\Omega\ } ¶¶where, p > 1,     a: \Bbb Rn ×\Bbb Rn ? \Bbb R,     a(y,x) ? áA(y)x,x?p/2-1, A ? Mn ×n(\Bbb R) p>1, \quad \alpha : \Bbb R^n \times \Bbb R^n \to \Bbb R, \quad \alpha(y,\xi) \approx \langle A(y)\xi,\xi \rangle ^{p/2-1}, A \in M^{n \times n}(\Bbb R) , A being a measurable periodic matrix such that At(x) = A(x) 3 0A^t(x) = A(x) \ge 0 almost everywhere.¶¶The anisotropy of the medium is described by the following structure hypothesis on the matrix A:¶¶l2/p(x) |x|2 £ áA(x)x,x? £ L 2/p(x) |x|2, \lambda^{2/p}(x) |\xi|^2 \leq \langle A(x)\xi,\xi \rangle \leq \Lambda ^{2/p}(x) |\xi|^2, ¶¶where the weight functions l \lambda and L \Lambda (satisfying suitable summability assumptions) can vanish or blow up, and can also be "moderately" different. The convergence to the homogenized problem is obtained by a classical compensated compactness argument, that had to be extended to two-weight Sobolev spaces.  相似文献   

15.
Summary. We investigate the bounded solutions j:[0,1]? X \varphi:[0,1]\to X of the system of functional equations¶¶j(fk(x))=Fk(j(x)),    k=0,?,n-1,x ? [0,1] \varphi(f_k(x))=F_k(\varphi(x)),\;\;k=0,\ldots,n-1,x\in[0,1] ,(*)¶where X is a complete metric space, f0,?,fn-1:[0,1]?[0,1] f_0,\ldots,f_{n-1}:[0,1]\to[0,1] and F0,...,Fn-1:X? X F_0,...,F_{n-1}:X\to X are continuous functions fulfilling the boundary conditions f0(0) = 0, fn-1(1) = 1, fk+1(0) = fk(1), F0(a) = a,Fn-1(b) = b,Fk+1(a) = Fk(b), k = 0,?,n-2 f_{0}(0) = 0, f_{n-1}(1) = 1, f_{k+1}(0) = f_{k}(1), F_{0}(a) = a,F_{n-1}(b) = b,F_{k+1}(a) = F_{k}(b),\,k = 0,\ldots,n-2 , for some a,b ? X a,b\in X . We give assumptions on the functions fk and Fk which imply the existence, uniqueness and continuity of bounded solutions of the system (*). In the case X = \Bbb C X= \Bbb C we consider some particular systems (*) of which the solutions determine some peculiar curves generating some fractals. If X is a closed interval we give a collection of conditions which imply respectively the existence of homeomorphic solutions, singular solutions and a.e. nondifferentiable solutions of (*).  相似文献   

16.
Suppose that $1 < p < \infty $1 < p < \infty , q=p/(p-1)q=p/(p-1), and for non-negative f ? Lp(-¥ ,¥)f\in L^p(-\infty\! ,\infty ) and any real x we let F(x)-F(0)=ò0xf(tdtF(x)-F(0)=\int _0^xf(t)\ dt; suppose in addition that ò-¥ F(t)exp(-|t|) dt=0\int\limits _{-\infty }^\infty F(t)\exp (-|t|)\ dt=0. Moser's second one-dimensional inequality states that there is a constant CpC_p, such that ò-¥ exp[a |F(x)|q-|x|]  dxCp\int\limits _{-\infty }^\infty \exp [a |F(x)|^q-|x|] \ dx\le C_p for each f with ||f||p £ 1||f||_p\le 1 and every a £ 1a\le 1. Moreover the value a = 1 is sharp. We replace the operation connecting f with F by a more general integral operation; specifically we consider non-negative kernels K(t,x) with the property that xK(t,x) is homogeneous of degree 0 in t, x. We state an analogue of the inequality above for this situation, discuss some applications and consider the sharpness of the constant which replaces a.  相似文献   

17.
Summary. Let \Bbb K {\Bbb K} be either the field of reals or the field of complex numbers, X be an F-space (i.e. a Fréchet space) over \Bbb K {\Bbb K} n be a positive integer, and f : X ? \Bbb K f : X \to {\Bbb K} be a solution of the functional equation¶¶f(x + f(x)n y) = f(x) f(y) f(x + f(x)^n y) = f(x) f(y) .¶We prove that, if there is a real positive a such that the set { x ? X : |f(x)| ? (0, a)} \{ x \in X : |f(x)| \in (0, a)\} contains a subset of second category and with the Baire property, then f is continuous or { x ? X : |f(x)| ? (0, a)} \{ x \in X : |f(x)| \in (0, a)\} for every x ? X x \in X . As a consequence of this we obtain the following fact: Every Baire measurable solution f : X ? \Bbb K f : X \to {\Bbb K} of the equation is continuous or equal zero almost everywhere (i.e., there is a first category set A ì X A \subset X with f(X \A) = { 0 }) f(X \backslash A) = \{ 0 \}) .  相似文献   

18.
We integrate the Lifting cocycles Y2n+1, Y2n+3, Y2n+5,? ([Sh1,2]) \Psi_{2n+1}, \Psi_{2n+3}, \Psi_{2n+5},\ldots\,([\rm Sh1,2]) on the Lie algebra Difn of holomorphic differential operators on an n-dimensional complex vector space to the cocycles on the Lie algebra of holomorphic differential operators on a holomorphic line bundle l \lambda on an n-dimensional complex manifold M in the sense of Gelfand--Fuks cohomology [GF] (more precisely, we integrate the cocycles on the sheaves of the Lie algebras of finite matrices over the corresponding associative algebras). The main result is the following explicit form of the Feigin--Tsygan theorem [FT1]:¶¶ H·Lie(\frak g\frak lfin(Difn);\Bbb C) = ù·(Y2n+1, Y2n+3, Y2n+5,? ) H^\bullet_{\rm Lie}({\frak g}{\frak l}^{\rm fin}_\infty({\rm Dif}_n);{\Bbb C}) = \wedge^\bullet(\Psi_{2n+1}, \Psi_{2n+3}, \Psi_{2n+5},\ldots\,) .  相似文献   

19.
We prove a Helly-type theorem for the family of all k-dimensional affine subsets of a Hilbert space H. The result is formulated in terms of Lipschitz selections of set-valued mappings from a metric space (M,r) ({\cal M},\rho) into this family.¶Let F be such a mapping satisfying the following condition: for every subset M¢ ì M {\cal M'} \subset {\cal M} consisting of at most 2k+1 points, the restriction F|M F|_{\cal M'} of F to M¢ {\cal M'} has a selection fM (i.e. fM(x) ? F(x) for all x  ? M¢) f_{\cal M'}\,({\rm i.e.}\,f_{\cal M'}(x) \in F(x)\,{\rm for\,all}\,x\,\in {\cal M'}) satisfying the Lipschitz condition ||fM(x) - fM(y)||  £ r(x,y ), x,y ? M¢ \parallel f_{\cal M'}(x) - f_{\cal M'}(y)\parallel\,\le \rho(x,y ),\,x,y \in {\cal M'} . Then F has a Lipschitz selection f : M ? H f : {\cal M} \to H such that ||f(x) - f(y) ||  £ gr(x,y ), x,y ? M \parallel f(x) - f(y) \parallel\,\le \gamma \rho (x,y ),\,x,y \in {\cal M} where g = g(k) \gamma = \gamma(k) is a constant depending only on k. (The upper bound of the number of points in M¢ {\cal M'} , 2k+1, is sharp.)¶The proof is based on a geometrical construction which allows us to reduce the problem to an extension property of Lipschitz mappings defined on subsets of metric trees.  相似文献   

20.
The large time behaviour of the Lq L^q -norm of nonnegative solutions to the "anisotropic" viscous Hamilton-Jacobi equation¶¶ ut - Du + ?i=1m |uxi|pi = 0      in   \mathbbR+×\mathbbRN,u_t - \Delta u + \sum_{i=1}^m \vert u_{x_i}\vert^{p_i} = 0 \;\;\mbox{ in }\; {\mathbb{R}}_+\times{\mathbb{R}}^N,¶¶is studied for q=1 q=1 and q=¥ q=\infty , where m ? {1,?,N} m\in\{1,\ldots,N\} and pi ? [1,+¥) p_i\in [1,+\infty) for i ? {1,?,m} i\in\{1,\ldots,m\} . The limit of the L1 L^1 -norm is identified, and temporal decay estimates for the L L^\infty -norm are obtained, according to the values of the pi p_i 's. The main tool in our approach is the derivation of L L^\infty -decay estimates for ?(ua ), a ? (0,1] \nabla\left(u^\alpha \right), \alpha\in (0,1] , by a Bernstein technique inspired by the ones developed by Bénilan for the porous medium equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号