首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we are concerned with the following nth-order ordinary differential equation $$x^{(n)}(t)+f(t,x(t),x'(t),\ldots,x^{(n-1)}(t))=0,\quad t\in (0,1),$$ with the nonlinear boundary conditions $$\begin{array}{l}x^{(i)}(0)=0,\quad i=0,1,\ldots,n-3,\\[3pt]g(x^{(n-2)}(0),x^{(n-1)}(0),x(\xi_1),\ldots,x(\xi_{m-2}))=A,\\[3pt]h(x^{(n-2)}(1),x^{(n-1)}(1),x(\eta_1),\ldots,x(\eta_{l-2}))=B,\end{array}$$ here A,BR, f:[0,1]×R n R is continuous, g:[0,1]×R m R is continuous, h:[0,1]×R l R is continuous, ξ i ∈(0,1), i=1,…,m?2, and η j ∈(0,1), j=1,…,l?2. The existence result is given by using a priori estimate, Nagumo condition, the method of upper and lower solutions and Leray-Schauder degree. We also give an example to demonstrate our result.  相似文献   

2.
We mainly study the existence of positive solutions for the following third order singular super-linear multi-point boundary value problem $$ \left \{ \begin{array}{l} x^{(3)}(t)+ f(t, x(t), x'(t))=0,\quad0 where \(0\leq\alpha_{i}\leq\sum_{i=1}^{m_{1}}\alpha_{i}<1\) , i=1,2,…,m 1, \(0<\xi_{1}< \xi_{2}< \cdots<\xi_{m_{1}}<1\) , \(0\leq\beta_{j}\leq\sum_{i=1}^{m_{2}}\beta_{i}<1\) , j=1,2,…,m 2, \(0<\eta_{1}< \eta_{2}< \cdots<\eta_{m_{2}}<1\) . And we obtain some necessary and sufficient conditions for the existence of C 1[0,1] and C 2[0,1] positive solutions by means of the fixed point theorems on a special cone. Our nonlinearity f(t,x,y) may be singular at t=0 and t=1.  相似文献   

3.
Some results of existence of positive solutions for singular boundary value problem $$\left\{\begin{array}{l}\displaystyle (-1)^{m}u^{(2m)}(t)=p(t)f(u(t)),\quad t\in(0,1),\\[2mm]\displaystyle u^{(i)}(0)=u^{(i)}(1)=0,\quad i=0,\ldots,m-1,\end{array}\right.$$ are given, where the function p(t) may be singular at t=0,1. Our analysis relies on the variational method.  相似文献   

4.
5.
Given X,Y two ${\mathbb{Q}}$ -vector spaces, and f : XY, we study under which conditions on the sets ${B_{k} \subseteq X, k=1,\ldots,s}$ , if ${\Delta_{h_1h_2 \cdots h_s}f(x) = 0}$ for all ${x \in X}$ and ${h_k \in B_k, k = 1,2,\ldots,s}$ , then ${\Delta_{h_1h_2\cdots h_{s}}f(x) = 0}$ for all ${(x,h_{1},\ldots,h_{s}) \in X^{s+1}}$ .  相似文献   

6.
For a measure preserving transformation \(T\) of a probability space \((X,\mathcal{F },\mu )\) and some \(d \ge 1\) we investigate almost sure and distributional convergence of random variables of the form $$\begin{aligned} x \rightarrow \frac{1}{C_n} \sum _{0\le i_1,\ldots ,\,i_d where \(C_1, C_2,\ldots \) are normalizing constants and the kernel \(f\) belongs to an appropriate subspace in some \(L_p(X^d\!,\, \mathcal{F }^{\otimes d}\!,\,\mu ^d)\) . We establish a form of the individual ergodic theorem for such sequences. Using a filtration compatible with \(T\) and the martingale approximation, we prove a central limit theorem in the non-degenerate case; for a class of canonical (totally degenerate) kernels and \(d=2\) , we also show that the convergence holds in distribution towards a quadratic form \(\sum _{m=1}^{\infty } \lambda _m\eta ^2_m\) in independent standard Gaussian variables \(\eta _1, \eta _2, \ldots \) .  相似文献   

7.
In this paper, we discuss the following third order ordinary differential equation $$x^{\prime\prime\prime}(t)=f(t,x(t),x^{\prime}(t),x^{\prime\prime}(t))+e(t),\quad t\in (0,1)$$ with the multi-point boundary conditions $$x^{\prime}(0)=\alpha x^{\prime}(\xi),\qquad x^{\prime\prime}(0)=0,\qquad x(1)=\sum^{m-2}_{j=1}\beta_{j}x(\eta_{j})$$ where β j (1≤jm?2), αR, 0<η 1<η 2<???<η m?2<1, 0<ξ<1. When the β j ’s have no same sign, some existence results are given for the nonlinear problems at resonance case. An example is provided in this paper.  相似文献   

8.
For anyx ∈ r put $$c(x) = \overline {\mathop {\lim }\limits_{t \to \infty } } \mathop {\min }\limits_{(p,q\mathop {) \in Z}\limits_{q \leqslant t} \times N} t\left| {qx - p} \right|.$$ . Let [x0; x1,..., xn, ...] be an expansion of x into a continued fraction and let \(M = \{ x \in J,\overline {\mathop {\lim }\limits_{n \to \infty } } x_n< \infty \}\) .ForxM put D(x)=c(x)/(1?c(x)). The structure of the set \(\mathfrak{D} = \{ D(x),x \in M\}\) is studied. It is shown that $$\mathfrak{D} \cap (3 + \sqrt 3 ,(5 + 3\sqrt 3 )/2) = \{ D(x^{(n,3} )\} _{n = 0}^\infty \nearrow (5 + 3\sqrt 3 )/2,$$ where \(x^{(n,3)} = [\overline {3;(1,2)_n ,1} ].\) This yields for \(\mu = \inf \{ z,\mathfrak{D} \supset (z, + \infty )\}\) (“origin of the ray”) the following lower bound: μ?(5+3√3)/2=5.0n>(5 + 3/3)/2=5.098.... Suppose a∈n. Put \(M(a) = \{ x \in M,\overline {\mathop {\lim }\limits_{n \to \infty } } x_n = a\}\) , \(\mathfrak{D}(a) = \{ D(x),x \in M(a)\}\) . The smallest limit point of \(\mathfrak{D}(a)(a \geqslant 2)\) is found. The structure of (a) is studied completely up to the smallest limit point and elucidated to the right of it.  相似文献   

9.
We establish the existence of positive solutions of the Lidstone boundary value problem $$\begin{array}{rcl}(-1)^{n}u^{(2n)}&=&\lambda a(t)f(u),\quad 0<t<1,\\[3pt]u^{(2i)}(0)&=&u^{(2i)}(1)=0,\quad 0\leq i\leq n-1\end{array}$$ for all sufficiently small positive real λ, where the function a may change sign in [0,1] and the function f:[0,∞)→R satisfies f(0)>0. We also show that our assumption is not vacuous.  相似文献   

10.
BOUNDARYVALUEPROBLEMSOFSINGULARLYPERTURBEDINTEGRO-DIFFERENTIALEQUATIONSZHOUQINDEMIAOSHUMEI(DepartmentofMathematics,JilinUnive...  相似文献   

11.
Let ${I\subset\mathbb{R}}$ be a nonvoid open interval and let L : I 2I be a fixed strict mean. A function M : I 2I is said to be an L-conjugate mean on I if there exist ${p,q\in\,]0,1]}$ and ${\varphi\in CM(I)}$ such that $$M(x,y):=\varphi^{-1}(p\varphi(x)+q\varphi(y)+(1-p-q) \varphi(L(x,y)))=:L_\varphi^{(p,q)}(x,y),$$ for all ${x,y\in I}$ . Here L(x, y) : = A χ(x, y) ${(x,y\in I)}$ is a fixed quasi-arithmetic mean with the fixed generating function ${\chi\in CM(I)}$ . We examine the following question: which L-conjugate means are weighted quasi-arithmetic means with weight ${r\in\, ]0,1[}$ at the same time? This question is a functional equation problem: Characterize the functions ${\varphi,\psi\in CM(I)}$ and the parameters ${p,q\in\,]0,1]}$ , ${r\in\,]0,1[}$ for which the equation $$L_\varphi^{(p,q)}(x,y)=L_\psi^{(r,1-r)}(x,y)$$ holds for all ${x,y\in I}$ .  相似文献   

12.
Given ${\Omega\subset\mathbb{R}^{n}}$ open, connected and with Lipschitz boundary, and ${s\in (0, 1)}$ , we consider the functional $$\mathcal{J}_s(E,\Omega)\,=\, \int_{E\cap \Omega}\int_{E^c\cap\Omega}\frac{dxdy}{|x-y|^{n+s}}+\int_{E\cap \Omega}\int_{E^c\cap \Omega^c}\frac{dxdy}{|x-y|^{n+s}}\,+ \int_{E\cap \Omega^c}\int_{E^c\cap \Omega}\frac{dxdy}{|x-y|^{n+s}},$$ where ${E\subset\mathbb{R}^{n}}$ is an arbitrary measurable set. We prove that the functionals ${(1-s)\mathcal{J}_s(\cdot, \Omega)}$ are equi-coercive in ${L^1_{\rm loc}(\Omega)}$ as ${s\uparrow 1}$ and that $$\Gamma-\lim_{s\uparrow 1}(1-s)\mathcal{J}_s(E,\Omega)=\omega_{n-1}P(E,\Omega),\quad \text{for every }E\subset\mathbb{R}^{n}\,{\rm measurable}$$ where P(E, ??) denotes the perimeter of E in ?? in the sense of De Giorgi. We also prove that as ${s\uparrow 1}$ limit points of local minimizers of ${(1-s)\mathcal{J}_s(\cdot,\Omega)}$ are local minimizers of P(·, ??).  相似文献   

13.
We prove that for any open Riemann surface ${\mathcal{N}}$ , natural number N ≥ 3, non-constant harmonic map ${h:\mathcal{N} \to \mathbb{R}}$ N?2 and holomorphic 2-form ${\mathfrak{H}}$ on ${\mathcal{N}}$ , there exists a weakly complete harmonic map ${X=(X_j)_{j=1,\ldots,{\sc N}}:\mathcal{N} \to \mathbb{R}^{\sc N}}$ with Hopf differential ${\mathfrak{H}}$ and ${(X_j)_{j=3,\ldots,{\sc N}}=h.}$ In particular, there exists a complete conformal minimal immersion ${Y=(Y_j)_{j=1,\ldots,{\sc N}}:\mathcal{N} \to \mathbb{R}^{\sc N}}$ such that ${(Y_j)_{j=3,\ldots,{\sc N}}=h}$ . As some consequences of these results (1) there exist complete full non-decomposable minimal surfaces with arbitrary conformal structure and whose generalized Gauss map is non-degenerate and fails to intersect N hyperplanes of ${\mathbb{CP}^{{\sc N}-1}}$ in general position. (2) There exist complete non-proper embedded minimal surfaces in ${\mathbb{R}^{\sc N},}$ ${\forall\,{\sc N} >3 .}$   相似文献   

14.
In this paper, we prove the existence of solutions of a nonlocal boundary value problem for nonlinear integro-differential equations of fractional order given by $$ \begin{array}{ll} ^cD^qx(t) = f(t,x(t),(\phi x)(t),(\psi x)(t)), \quad 0 < t < 1,\\x(0) = \beta x(\eta), x'(0) =0, x''(0) =0, \ldots, x^{(m-2)}(0) =0, x(1)= \alpha x(\eta), \end{array}$$ where $${q \in (m-1, m], m \in \mathbb{N}, m \ge 2}$, $0< \eta <1$$ , and ${\phi x}$ and ${\psi x}$ are integral operators. The existence results are established by means of the contraction mapping principle and Krasnoselskii’s fixed point theorem. An illustrative example is also presented.  相似文献   

15.
In this paper, we consider functions ${u\in W^{m,1}(0,1)}$ where m ≥ 2 and u(0) = Du(0) = · · · = D m-1 u(0) = 0. Although it is not true in general that ${\frac{D^ju(x)}{x^{m-j}} \in L^1(0,1)}$ for ${j\in \{0,1,\ldots,m-1\}}$ , we prove that ${\frac{D^ju(x)}{x^{m-j-k}} \in W^{k,1}(0,1)}$ if k ≥ 1 and 1 ≤ j + k ≤ m, with j, k integers. Furthermore, we have the following Hardy type inequality, $$\left\|{D^k\left({\frac{D^ju(x)}{x^{m-j-k}}}\right)}\right\|_{L^1(0,1)} \leq \frac {(k-1)!}{(m-j-1)!} \|{D^mu}\|_{L^1(0,1)},$$ where the constant is optimal.  相似文献   

16.
We study the sets $\mathcal{T}_{v}=\{m \in\{1,2,\ldots\}: \mbox{there is a convex polygon in }\mathbb{R}^{2}\mbox{ that has }v\mbox{ vertices and can be tiled with $m$ congruent equilateral triangles}\}$ , v=3,4,5,6. $\mathcal{T}_{3}$ , $\mathcal{T}_{4}$ , and $\mathcal{T}_{6}$ can be quoted completely. The complement $\{1,2,\ldots\} \setminus\mathcal{T}_{5}$ of $\mathcal{T}_{5}$ turns out to be a subset of Euler’s numeri idonei. As a consequence, $\{1,2,\ldots\} \setminus\mathcal{T}_{5}$ can be characterized with up to two exceptions, and a complete characterization is given under the assumption of the Generalized Riemann Hypothesis.  相似文献   

17.
An ${(N;n,m,\{w_1,\ldots, w_t\})}$ -separating hash family is a set ${\mathcal{H}}$ of N functions ${h: \; X \longrightarrow Y}$ with ${|X|=n, |Y|=m, t \geq 2}$ having the following property. For any pairwise disjoint subsets ${C_1, \ldots, C_t \subseteq X}$ with ${|C_i|=w_i, i=1, \ldots, t}$ , there exists at least one function ${h \in \mathcal{H}}$ such that ${h(C_1), h(C_2), \ldots, h(C_t)}$ are pairwise disjoint. Separating hash families generalize many known combinatorial structures such as perfect hash families, frameproof codes, secure frameproof codes, identifiable parent property codes. In this paper we present new upper bounds on n which improve many previously known bounds. Further we include constructions showing that some of these bounds are tight.  相似文献   

18.
In this note we prove the following: Let n?≥ 2 be a fixed integer. A system of additive functions ${A_{1},A_{2},\ldots,A_{n}:\mathbb{R} \to\mathbb{R}}$ is linearly dependent (as elements of the ${\mathbb{R}}$ vector space ${\mathbb{R}^{\mathbb{R}}}$ ), if and only if, there exists an indefinite quadratic form ${Q:\mathbb{R}^{n}\to\mathbb{R} }$ such that ${Q(A_{1}(x),A_{2}(x),\ldots,A_{n}(x))\geq 0}$ or ${Q(A_{1}(x),A_{2}(x),\ldots,A_{n}(x))\leq 0}$ holds for all ${x\in\mathbb{R}}$ .  相似文献   

19.
Let $\gamma ,\delta \in \mathbb{R}^n $ with $\gamma _j ,\delta _j \in \{ 0,1\} $ . A comparison pair for a system of equations fi(u1,…,un)=0 (i=1,…,n) is a pair of vectors $v,w \in \mathbb{R}^n ,v \leqslant w$ , such that $$\begin{array}{*{20}c} {\gamma _i f_i (u_1 , \ldots ,u_{i - 1} ,v_i ,u_i + 1, \ldots ,u_n ) \leqslant 0,} \\ {\delta _i f_i (u_1 , \ldots ,u_{i - 1} ,w_i ,u_i + 1, \ldots ,u_n ) \geqslant 0} \\ \end{array} $$ for $\gamma _j u_j \geqslant v_j ,\delta _j u_j \leqslant w_j (j = 1, \ldots ,n)$ . The presence of comparison pairs enables one to essentially weaken the assumptions of the existence theorem. Bibliography: 1 title.  相似文献   

20.
A. A. Irmatov 《Acta Appl Math》2001,68(1-3):211-226
Two approaches on estimating the number of threshold functions which were recently developed by the author are discussed. Let P(K,n) denote the number of threshold functions in K-valued logic. The first approach establishes that $$P(K,n + 1) \geqslant \frac{1}{2}\left( {\mathop {K^{n - 1} }\limits_{\left\lfloor {n - 4 - 2\frac{n}{{\log _K n}}} \right\rfloor } } \right)P\left( {K,\left\lfloor {{\text{2}}\frac{n}{{\log _K n}} + 3} \right\rfloor } \right).$$ The key argument of investigation is the generalization of the result of Odlyzko on subspaces spanned by random selections of ±1-vectors. Let $E_K = \{ 0,1 \ldots ,K - 1\} $ and let E denote the set of all vectors $w_i ,i = 1, \ldots ,K^n $ , which have the form $(1,a_1 , \ldots ,a_n ),a_i \in E_K $ . Denote by $\Lambda _n (K)$ the number of all collections of different vectors $(w_{i_1 } , \ldots ,w_{i_n } ),2 \leqslant i_1 , \ldots ,i_n \leqslant \mathbb{K}^n $ , such that, for any k, $1 \leqslant k \leqslant n$ , the vector $w_{i_k } $ is minimal among all vectors from the set $E \cap {\text{span}}(w_{i_k } , \ldots ,w_{i_n } )$ . The second approach is based on topology-combinatorical techniques and allows to establish the following inequality $P(K,n) \geqslant 2\Lambda _n (K)$ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号