首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, we consider isometric immersions ${f : M \rightarrow \tilde{M}(c)}$ of (2n + 1)-dimensional invariant submanifold M 2n+1 of (2m + 1) dimensional Sasakian space form ${\tilde{M}^{2m+1}}$ of constant ${ \varphi}$ -sectional curvature c. We have shown that if f satisfies the curvature condition ${\overset{\_}{R}(X, Y) \cdot \sigma =Q(g, \sigma)}$ then either M 2n+1 is totally geodesic, or ${||\sigma||^{2}=\frac{1}{3}(2c+n(c+1)),}$ or ${||\sigma||^{2}(x) > \frac{1}{3}(2c+n(c+1)}$ at some point x of M 2n+1. We also prove that ${\overset{\_ }{R}(X, Y)\cdot \sigma = \frac{1}{2n}Q(S, \sigma)}$ then either M 2n+1 is totally geodesic, or ${||\sigma||^{2}=-\frac{2}{3}(\frac{1}{2n}\tau -\frac{1}{2}(n+2)(c+3)+3)}$ , or ${||\sigma||^{2}(x) > -\frac{2}{3}(\frac{1}{2n} \tau (x)-\frac{1}{2} (n+2)(c+3)+3)}$ at some point x of M 2n+1.  相似文献   

2.
3.
Let ${\Phi}$ be a continuous, strictly increasing and concave function on (0, ∞) of critical lower type index ${p_\Phi^- \in(0,\,1]}$ . Let L be an injective operator of type ω having a bounded H functional calculus and satisfying the k-Davies–Gaffney estimates with ${k \in {\mathbb Z}_+}$ . In this paper, the authors first introduce an Orlicz–Hardy space ${H^{\Phi}_{L}(\mathbb{R}^n)}$ in terms of the non-tangential L-adapted square function and then establish its molecular characterization. As applications, the authors prove that the generalized Riesz transform ${D_{\gamma}L^{-\delta/(2k)}}$ is bounded from the Orlicz–Hardy space ${H^{\Phi}_{L}(\mathbb{R}^n)}$ to the Orlicz space ${L^{\widetilde{\Phi}}(\mathbb{R}^n)}$ when ${p_\Phi^- \in (0, \frac{n}{n+ \delta - \gamma}]}$ , ${0 < \gamma \le \delta < \infty}$ and ${\delta- \gamma < n (\frac{1}{p_-(L)}-\frac{1}{p_+(L)})}$ , or from ${H^{\Phi}_{L}(\mathbb{R}^n)}$ to the Orlicz–Hardy space ${H^{\widetilde \Phi}(\mathbb{R}^n)}$ when ${p_\Phi^-\in (\frac{n}{n + \delta+ \lfloor \gamma \rfloor- \gamma},\,\frac{n}{n+ \delta- \gamma}]}$ , ${1\le \gamma \le \delta < \infty}$ and ${\delta- \gamma < n (\frac{1}{p_-(L)}-\frac{1}{p_+(L)})}$ , or from ${H^{\Phi}_{L}(\mathbb{R}^n)}$ to the weak Orlicz–Hardy space ${WH^\Phi(\mathbb{R}^n)}$ when ${\gamma = \delta}$ and ${p_\Phi=n/(n + \lfloor \gamma \rfloor)}$ or ${p_\Phi^-=n/(n + \lfloor \gamma \rfloor)}$ with ${p_\Phi^-}$ attainable, where ${\widetilde{\Phi}}$ is an Orlicz function whose inverse function ${\widetilde{\Phi}^{-1}}$ is defined by ${\widetilde{\Phi}^{-1}(t):=\Phi^{-1}(t)t^{\frac{1}{n}(\gamma- \delta)}}$ for all ${t \in (0,\,\infty)}$ , ${p_\Phi}$ denotes the strictly critical lower type index of ${\Phi}$ , ${\lfloor \gamma \rfloor}$ the maximal integer not more than ${\gamma}$ and ${(p_-(L),\,p_+(L))}$ the range of exponents ${p \in[1,\, \infty]}$ for which the semigroup ${\{e^{-tL}\}_{t >0 }}$ is bounded on ${L^p(\mathbb{R}^n)}$ .  相似文献   

4.
5.
Let ${I\subset\mathbb{R}}$ be a nonvoid open interval and let L : I 2I be a fixed strict mean. A function M : I 2I is said to be an L-conjugate mean on I if there exist ${p,q\in\,]0,1]}$ and ${\varphi\in CM(I)}$ such that $$M(x,y):=\varphi^{-1}(p\varphi(x)+q\varphi(y)+(1-p-q) \varphi(L(x,y)))=:L_\varphi^{(p,q)}(x,y),$$ for all ${x,y\in I}$ . Here L(x, y) : = A χ(x, y) ${(x,y\in I)}$ is a fixed quasi-arithmetic mean with the fixed generating function ${\chi\in CM(I)}$ . We examine the following question: which L-conjugate means are weighted quasi-arithmetic means with weight ${r\in\, ]0,1[}$ at the same time? This question is a functional equation problem: Characterize the functions ${\varphi,\psi\in CM(I)}$ and the parameters ${p,q\in\,]0,1]}$ , ${r\in\,]0,1[}$ for which the equation $$L_\varphi^{(p,q)}(x,y)=L_\psi^{(r,1-r)}(x,y)$$ holds for all ${x,y\in I}$ .  相似文献   

6.
Given ${\Omega\subset\mathbb{R}^{n}}$ open, connected and with Lipschitz boundary, and ${s\in (0, 1)}$ , we consider the functional $$\mathcal{J}_s(E,\Omega)\,=\, \int_{E\cap \Omega}\int_{E^c\cap\Omega}\frac{dxdy}{|x-y|^{n+s}}+\int_{E\cap \Omega}\int_{E^c\cap \Omega^c}\frac{dxdy}{|x-y|^{n+s}}\,+ \int_{E\cap \Omega^c}\int_{E^c\cap \Omega}\frac{dxdy}{|x-y|^{n+s}},$$ where ${E\subset\mathbb{R}^{n}}$ is an arbitrary measurable set. We prove that the functionals ${(1-s)\mathcal{J}_s(\cdot, \Omega)}$ are equi-coercive in ${L^1_{\rm loc}(\Omega)}$ as ${s\uparrow 1}$ and that $$\Gamma-\lim_{s\uparrow 1}(1-s)\mathcal{J}_s(E,\Omega)=\omega_{n-1}P(E,\Omega),\quad \text{for every }E\subset\mathbb{R}^{n}\,{\rm measurable}$$ where P(E, ??) denotes the perimeter of E in ?? in the sense of De Giorgi. We also prove that as ${s\uparrow 1}$ limit points of local minimizers of ${(1-s)\mathcal{J}_s(\cdot,\Omega)}$ are local minimizers of P(·, ??).  相似文献   

7.
We study limit behavior for sums of the form $\frac{1}{|\Lambda_{L|}}\sum_{x\in \Lambda_{L}}u(t,x),$ where the field $\Lambda_L=\left\{x\in {\bf{Z^d}}:|x|\le L\right\}$ is composed of solutions of the parabolic Anderson equation $$u(t,x) = 1 + \kappa \mathop{\int}_{0}^{t} \Delta u(s,x){\rm d}s + \mathop{\int}_{0}^{t}u(s,x)\partial B_{x}(s). $$ The index set is a box in Z d , namely $\Lambda_{L} = \left\{x\in {\bf Z}^{\bf d} : |x| \leq L\right\}$ and L = L(t) is a nondecreasing function $L : [0,\infty)\rightarrow {\bf R}^{+}. $ We identify two critical parameters $\eta(1) < \eta(2)$ such that for $\gamma > \eta(1)$ and L(t) = eγ t , the sums $\frac{1}{|\Lambda_L|}\sum_{x\in \Lambda_L}u(t,x)$ satisfy a law of large numbers, or put another way, they exhibit annealed behavior. For $\gamma > \eta(2)$ and L(t) = eγ t , one has $\sum_{x\in \Lambda_L}u(t,x)$ when properly normalized and centered satisfies a central limit theorem. For subexponential scales, that is when $\lim_{t \rightarrow \infty} \frac{1}{t}\ln L(t) = 0,$ quenched asymptotics occur. That means $\lim_{t\rightarrow \infty}\frac{1}{t}\ln\left (\frac{1}{|\Lambda_L|}\sum_{x\in \Lambda_L}u(t,x)\right) = \gamma(\kappa),$ where $\gamma(\kappa)$ is the almost sure Lyapunov exponent, i.e. $\lim_{t\rightarrow \infty}\frac{1}{t}\ln u(t,x)= \gamma(\kappa).$ We also examine the behavior of $\frac{1}{|\Lambda_L|}\sum_{x\in \Lambda_L}u(t,x)$ for L = e γ t with γ in the transition range $(0,\eta(1))$   相似文献   

8.
We consider the supercritical problem $$\begin{array}{l}{-}\Delta u=\left\vert u\right\vert ^{p-2}u \; {\rm in} \; \Omega,\quad u=0 \; {\rm on} \; \partial \Omega, \end{array}$$ where Ω is a bounded smooth domain in ${\mathbb{R}^{N}}$ , N ≥ 3, and ${p\geq2^{\ast}:=\frac{2N}{N-2}}$ . Bahri and Coron showed that if Ω has nontrivial homology this problem has a positive solution for p = 2*. However, this is not enough to guarantee existence in the supercritical case. For ${p\geq\frac{2(N-1)}{N-3}}$ Passaseo exhibited domains carrying one nontrivial homology class in which no nontrivial solution exists. Here we give examples of domains whose homology becomes richer as p increases. More precisely, we show that for ${p>\frac{2(N-k)}{N-k-2}}$ with 1 ≤ k ≤ N?3 there are bounded smooth domains in ${\mathbb{R}^{N}}$ whose cup-length is k + 1 in which this problem does not have a nontrivial solution. For N = 4,8,16 we show that there are many domains, arising from the Hopf fibrations, in which the problem has a prescribed number of solutions for some particular supercritical exponents.  相似文献   

9.
Let (T t ) t?≥ 0 be a bounded analytic semigroup on L p (Ω), with 1?<?p?<?∞. Let ?A denote its infinitesimal generator. It is known that if A and A * both satisfy square function estimates ${\bigl\|\bigl(\int_{0}^{\infty} \vert A^{\frac{1}{2}} T_t(x)\vert^2 {\rm d}t \bigr)^{\frac{1}{2}}\bigr\|_{L^p} \lesssim \|x\|_{L^p}}$ and ${\bigl\|\bigl(\int_{0}^{\infty} \vert A^{*\frac{1}{2}} T_t^*(y) \vert^2 {\rm d}t \bigr)^{\frac{1}{2}}\bigr\|_{L^{p^\prime}} \lesssim \|y\|_{L^{p^\prime}}}$ for ${x\in L^p(\Omega)}$ and ${y\in L^{p^\prime}(\Omega)}$ , then A admits a bounded ${H^{\infty}(\Sigma_\theta)}$ functional calculus for any ${\theta>\frac{\pi}{2}}$ . We show that this actually holds true for some ${\theta<\frac{\pi}{2}}$ .  相似文献   

10.
Let ${N \geq 3}$ and u be the solution of u t = Δ log u in ${\mathbb{R}^N \times (0, T)}$ with initial value u 0 satisfying ${B_{k_1}(x, 0) \leq u_{0} \leq B_{k_2}(x, 0)}$ for some constants k 1k 2 > 0 where ${B_k(x, t) = 2(N - 2)(T - t)_{+}^{N/(N - 2)}/(k + (T - t)_{+}^{2/(N - 2)}|x|^{2})}$ is the Barenblatt solution for the equation and ${u_0 - B_{k_0} \in L^{1}(\mathbb{R}^{N})}$ for some constant k 0 > 0 if ${N \geq 4}$ . We give a new different proof on the uniform convergence and ${L^1(\mathbb{R}^N)}$ convergence of the rescaled function ${\tilde{u}(x, s) = (T - t)^{-N/(N - 2)}u(x/(T - t)^{-1/(N - 2)}, t), s = -{\rm log}(T - t)}$ , on ${\mathbb{R}^N}$ to the rescaled Barenblatt solution ${\tilde{B}_{k_0}(x) = 2(N - 2)/(k_0 + |x|^{2})}$ for some k 0 > 0 as ${s \rightarrow \infty}$ . When ${N \geq 4, 0 \leq u_0(x) \leq B_{k_0}(x, 0)}$ in ${\mathbb{R}^N}$ , and ${|u_0(x) - B_{k_0}(x, 0)| \leq f \in L^{1}(\mathbb{R}^{N})}$ for some constant k 0 > 0 and some radially symmetric function f, we also prove uniform convergence and convergence in some weighted L 1 space in ${\mathbb{R}^N}$ of the rescaled solution ${\tilde{u}(x, s)}$ to ${\tilde{B}_{k_0}(x)}$ as ${s \rightarrow \infty}$ .  相似文献   

11.
We consider the following question: Given a connected open domain ${\Omega \subset \mathbb{R}^n}$ , suppose ${u, v : \Omega \rightarrow \mathbb{R}^n}$ with det ${(\nabla u) > 0}$ , det ${(\nabla v) > 0}$ a.e. are such that ${\nabla u^T(x)\nabla u(x) = \nabla v(x)^T \nabla v(x)}$ a.e. , does this imply a global relation of the form ${\nabla v(x) = R\nabla u(x)}$ a.e. in Ω where ${R \in SO(n)}$ ? If u, v are C 1 it is an exercise to see this true, if ${u, v\in W^{1,1}}$ we show this is false. In Theorem 1 we prove this question has a positive answer if ${v \in W^{1,1}}$ and ${u \in W^{1,n}}$ is a mapping of L p integrable dilatation for p > n ? 1. These conditions are sharp in two dimensions and this result represents a generalization of the corollary to Liouville’s theorem that states that the differential inclusion ${\nabla u \in SO(n)}$ can only be satisfied by an affine mapping. Liouville’s corollary for rotations has been generalized by Reshetnyak who proved convergence of gradients to a fixed rotation for any weakly converging sequence ${v_k \in W^{1,1}}$ for which $$\int \limits_{\Omega} {\rm dist}(\nabla v_k, SO(n))dz \rightarrow 0 \, {\rm as} \, k \rightarrow \infty.$$ Let S(·) denote the (multiplicative) symmetric part of a matrix. In Theorem 3 we prove an analogous result to Theorem 1 for any pair of weakly converging sequences ${v_k \in W^{1,p}}$ and ${u_k \in W^{1,\frac{p(n-1)}{p-1}}}$ (where ${p \in [1, n]}$ and the sequence (u k ) has its dilatation pointwise bounded above by an L r integrable function, rn ? 1) that satisfy ${\int_{\Omega} |S(\nabla u_k) - S(\nabla v_k)|^p dz \rightarrow 0}$ as k → ∞ and for which the sign of the det ${(\nabla v_k)}$ tends to 1 in L 1. This result contains Reshetnyak’s theorem as the special case (u k ) ≡ Id, p = 1.  相似文献   

12.
Given a vector field ${\mathfrak{a}}$ on ${\mathbb{R}^3}$ , we consider a mapping ${x\mapsto \Pi_{\mathfrak{a}}(x)}$ that assigns to each ${x\in\mathbb{R}^3}$ , a plane ${\Pi_{\mathfrak{a}}(x)}$ containing x, whose normal vector is ${\mathfrak{a}(x)}$ . Associated with this mapping, we define a maximal operator ${\mathcal{M}^{\mathfrak{a}}_N}$ on ${L^1_{loc}(\mathbb{R}^3)}$ for each ${N\gg 1}$ by $$\mathcal{M}^{\mathfrak{a}}_Nf(x)=\sup_{x\in\tau} \frac{1}{|\tau|} \int_{\tau}|f(y)|\,dy$$ where the supremum is taken over all 1/N ×? 1/N?× 1 tubes τ whose axis is embedded in the plane ${\Pi_\mathfrak{a}(x)}$ . We study the behavior of ${\mathcal{M}^{\mathfrak{a}}_N}$ according to various vector fields ${\mathfrak{a}}$ . In particular, we classify the operator norms of ${\mathcal{M}^{\mathfrak{a}}_N}$ on ${L^2(\mathbb{R}^3)}$ when ${\mathfrak{a}(x)}$ is the linear function of the form (a 11 x 1?+?a 21 x 2, a 12 x 1?+?a 22 x 2, 1). The operator norm of ${\mathcal{M}^\mathfrak{a}_N}$ on ${L^2(\mathbb{R}^3)}$ is related with the number given by $$D=(a_{12}+a_{21})^2-4a_{11}a_{22}.$$   相似文献   

13.
14.
We show that every $n$ -point tree metric admits a $(1+\varepsilon )$ -embedding into $\ell _1^{C(\varepsilon ) \log n}$ , for every $\varepsilon > 0$ , where $C(\varepsilon ) \le O\big ((\frac{1}{\varepsilon })^4 \log \frac{1}{\varepsilon })\big )$ . This matches the natural volume lower bound up to a factor depending only on $\varepsilon $ . Previously, it was unknown whether even complete binary trees on $n$ nodes could be embedded in $\ell _1^{O(\log n)}$ with $O(1)$ distortion. For complete $d$ -ary trees, our construction achieves $C(\varepsilon ) \le O\big (\frac{1}{\varepsilon ^2}\big )$ .  相似文献   

15.
In this paper, we will prove the existence of infinitely many solutions for the following elliptic problem with critical Sobolev growth and a Hardy potential: $$-\Delta u-\frac{\mu}{|x|^2}u = |u|^{2^{\ast}-2}u+a u\quad {\rm in}\;\Omega,\quad u=0 \quad {\rm on}\; \partial\Omega,\qquad (*)$$ under the assumptions that N ≥ 7, ${\mu\in \left[0,\frac{(N-2)^2}4-4\right)}$ and a > 0, where ${2^{\ast}=\frac{2N}{N-2}}$ , and Ω is an open bounded domain in ${\mathbb{R}^N}$ which contains the origin. To achieve this goal, we consider the following perturbed problem of (*), which is of subcritical growth, $$-\Delta u-\frac{\mu}{|x|^2}u = |u|^{2^{\ast}-2-\varepsilon_n}u+au \quad {\rm in}\,\Omega, \quad u=0 \quad {\rm on}\;\partial\Omega,\qquad(\ast\ast)_n$$ where ${\varepsilon_{n} > 0}$ is small and ${\varepsilon_n \to 0}$ as n → + ∞. By the critical point theory for the even functionals, for each fixed ${\varepsilon_{n} > 0}$ small, (**) n has a sequence of solutions ${u_{k,\varepsilon_{n}} \in H^{1}_{0}(\Omega)}$ . We obtain the existence of infinitely many solutions for (*) by showing that as n → ∞, ${u_{k,\varepsilon_{n}}}$ converges strongly in ${H^{1}_{0}(\Omega)}$ to u k , which must be a solution of (*). Such a convergence is obtained by applying a local Pohozaev identity to exclude the possibility of the concentration of ${\{u_{k,\varepsilon_n}\}}$ .  相似文献   

16.
We introduce vanishing generalized Morrey spaces ${V\mathcal{L}^{p,\varphi}_\Pi (\Omega), \Omega \subseteq \mathbb{R}^n}$ with a general function ${\varphi(x, r)}$ defining the Morrey-type norm. Here ${\Pi \subseteq \Omega}$ is an arbitrary subset in Ω including the extremal cases ${\Pi = \{x_0\}, x_0 \in \Omega}$ and Π = Ω, which allows to unify vanishing local and global Morrey spaces. In the spaces ${V\mathcal{L}^{p,\varphi}_\Pi (\mathbb{R}^n)}$ we prove the boundedness of a class of sublinear singular operators, which includes Hardy-Littlewood maximal operator and Calderon-Zygmund singular operators with standard kernel. We also prove a Sobolev-Spanne type ${V\mathcal{L}^{p,\varphi}_\Pi (\mathbb{R}^n) \rightarrow V\mathcal{L}^{q,\varphi^\frac{q}{p}}_\Pi (\mathbb{R}^n)}$ -theorem for the potential operator I α . The conditions for the boundedness are given in terms of Zygmund-type integral inequalities on ${\varphi(x, r)}$ . No monotonicity type condition is imposed on ${\varphi(x, r)}$ . In case ${\varphi}$ has quasi- monotone properties, as a consequence of the main results, the conditions of the boundedness are also given in terms of the Matuszeska-Orlicz indices of the function ${\varphi}$ . The proofs are based on pointwise estimates of the modulars defining the vanishing spaces  相似文献   

17.
We prove that weak-strong uniqueness holds for the $\beta $ -generalized surface quasi-geostrophic equation in the regular class $\nabla \theta \in L^{q}(0,T; L^{p}(\mathbb{R }^{2}))$ with $\frac{\alpha }{q}+\frac{2}{p}=\alpha +\beta -1$ , where $\alpha \in (0,1], \beta \in [1,2)$ and $\frac{2}{\alpha +\beta -1}<p<\infty $ .  相似文献   

18.
Let ${f:\Omega \rightarrow \mathbb{R}}$ be a smooth function on a domain   ${\Omega \subset \mathbb{C}^n}$ with its Hessian matrix ${\left( \frac{\partial^2 f}{\partial z^i \partial\bar{z}^j}\right)}$ positive Hermitian. In this paper, we investigate a class of partial differential equations $$\Delta \ln \det (f_{i\bar{j}}) = \beta \;\| \text{grad} \ln \det (f_{i\bar{j}}) \|^2, $$ where Δ and ${\| \cdot \|}$ are the Laplacian and tensor norm, respectively, with respect to the metric ${G = \sum f_{i\bar{j}} \,dz^i \otimes d\bar{z}^j}$ , and β > 1 is some real constant depending on the dimension n. We prove that the above PDEs have a Bernstein property when the metric G is complete, provided that ${\det (f_{i\bar{j}})}$ and the Ricci curvature are bounded.  相似文献   

19.
We prove two antibasis theorems for ${\Pi^0_1}$ classes. The first is a jump inversion theorem for ${\Pi^0_1}$ classes with respect to the global structure of the Turing degrees. For any ${P\subseteq 2^\omega}$ , define S(P), the degree spectrum of P, to be the set of all Turing degrees a such that there exists ${A \in P}$ of degree a. For any degree ${{\bf a \geq 0'}}$ , let ${\textrm{Jump}^{-1}({\bf a) = \{b : b' = a \}}}$ . We prove that, for any ${{\bf a \geq 0'}}$ and any ${\Pi^0_1}$ class P, if ${\textrm{Jump}^{-1} ({\bf a}) \subseteq S(P)}$ then P contains a member of every degree. For any degree ${{\bf a \geq 0'}}$ such that a is recursively enumerable (r.e.) in 0', let ${Jump_{\bf \leq 0'} ^{-1}({\bf a)=\{b : b \leq 0' \textrm{and} b' = a \}}}$ . The second theorem concerns the degrees below 0'. We prove that for any ${{\bf a\geq 0'}}$ which is recursively enumerable in 0' and any ${\Pi^0_1}$ class P, if ${\textrm{Jump}_{\bf \leq 0'} ^{-1}({\bf a)} \subseteq S(P)}$ then P contains a member of every degree.  相似文献   

20.
Let K be a totally real number field, π an irreducible cuspidal representation of ${{\rm GL}_{2}(K){\backslash}{\rm GL}_{2}(\mathbb{A}K)}$ with unitary central character, and χ a Hecke character of conductor ${\mathfrak{q}}$ . Then ${L(1/2, \pi\oplus\chi) \ll (\mathcal{N}\mathfrak{q})^{\frac{1}{2}-\frac{1}{8}(1-2\theta)+\epsilon}}$ , where 0 ≤ θ ≤ 1/2 is any exponent towards the Ramanujan–Petersson conjecture (θ =  1/9 is admissible). The proof is based on a spectral decomposition of shifted convolution sums and a generalized Kuznetsov formula.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号