首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We prove that if m and \({\nu}\) are integers with \({0 \leq \nu \leq m}\) and x is a real number, then
  1. $$\sum_{k=0 \atop k+m \, \, odd}^{m-1} {m \choose k}{k+m \choose \nu} B_{k+m-\nu}(x) = \frac{1}{2} \sum_{j=0}^m (-1)^{j+m} {m \choose j}{j+m-1 \choose \nu} (j+m) x^{j+m-\nu-1},$$ where B n (x) denotes the Bernoulli polynomial of degree n. An application of (1) leads to new identities for Bernoulli numbers B n . Among others, we obtain
  2. $$\sum_{k=0 \atop k+m \, \, odd}^{m -1} {m \choose k}{k+m \choose \nu} {k+m-\nu \choose j}B_{k+m-\nu-j} =0 \quad{(0 \leq j \leq m-2-\nu)}. $$ This formula extends two results obtained by Kaneko and Chen-Sun, who proved (2) for the special cases j = 1, \({\nu=0}\) and j = 3, \({\nu=0}\) , respectively.
  相似文献   

2.
Let φ be a primitive Maass cusp form and t φ (n) be its nth Fourier coefficient at the cusp infinity. In this short note, we are interested in the estimation of the sums ${\sum_{n \leq x}t_{\varphi}(n)}$ and ${\sum_{n \leq x}t_{\varphi}(n^2)}$ . We are able to improve the previous results by showing that for any ${\varepsilon > 0}$ $$\sum_{n \leq x}t_{\varphi}(n) \ll\, _{\varphi, \varepsilon} x^{\frac{1027}{2827} + \varepsilon} \quad {and}\quad\sum_{n \leq x}t_{\varphi}(n^2) \ll\,_{\varphi, \varepsilon} x^{\frac{489}{861} + \varepsilon}.$$   相似文献   

3.
Let \({\Omega \subset \mathbb{R}^2}\) be an open, bounded domain and \({\Omega = \bigcup_{i = 1}^{N} \Omega_{i}}\) be a partition. Denote the Fraenkel asymmetry by \({0 \leq \mathcal{A}(\Omega_i) \leq 2}\) and write $$D(\Omega_i) := \frac{|\Omega_{i}| - {\rm min}_{1 \leq j \leq N}{|\Omega_{j}|}}{|\Omega_{i}|}$$ with \({0 \leq D(\Omega_{i}) \leq 1}\) . For N sufficiently large depending only on \({\Omega}\) , there is an uncertainty principle $$\left(\sum_{i=1}^{N}{\frac{|\Omega_{i}|}{|\Omega|}{\mathcal{A}}(\Omega_i)}\right) + \left(\sum_{i=1}^{N}{\frac{|\Omega_i|}{|\Omega|}D(\Omega_i)}\right) \geq \frac{1}{60000}.$$ The statement remains true in dimensions \({n \geq 3}\) for some constant \({c_{n} > 0}\) . As an application, we give an (unspecified) improvement of Pleijel’s estimate on the number of nodal domains of a Laplacian eigenfunction and an improved inequality for a spectral partition problem.  相似文献   

4.
Let ${\mathcal L(r) = \sum_{n=0}^\infty a_nr^{\lambda_n}}$ be a lacunary series converging for 0 <  r < 1, with coefficients in a quasinormed space. It is proved that $$\int_0^1 F(1-r,\|\mathcal L(r)\|)(1-r)^{-1}\,{\rm d}r < \infty $$ if and only if $$ \sum_{n=0}^\infty F(1/\lambda_n,\|a_n\|) < \infty, $$ where F is a “normal function” of two variables. In the case when p ≥ 1 and F(x, y) =  x y p , this reduces to a theorem of Gurariy and Matsaev. As an application we prove that if ${f(r\zeta) = \sum_{n=0}^\infty r^{\lambda_n}f_{\lambda_n}(\zeta)}$ is a function harmonic in the unit ball of ${\mathbb R^N,}$ then $$\int_0^1M_p^q(r,f)(1-r)^{q\alpha-1} \,{\rm d}r <\infty\quad (p,\,q,\,\alpha >0 ) $$ if and only if $$\sum_{n=0}^\infty \|f_{\lambda_n} \|^q_{L^p(\partial B_N)}(1/\lambda_n)^{q\alpha} <\infty. $$   相似文献   

5.
6.
Let ${\pi=(d_{1},d_{2},\ldots,d_{n})}$ and ${\pi'=(d'_{1},d'_{2},\ldots,d'_{n})}$ be two non-increasing degree sequences. We say ${\pi}$ is majorizated by ${\pi'}$ , denoted by ${\pi \vartriangleleft \pi'}$ , if and only if ${\pi\neq \pi'}$ , ${\sum_{i=1}^{n}d_{i}=\sum_{i=1}^{n}d'_{i}}$ , and ${\sum_{i=1}^{j}d_{i}\leq\sum_{i=1}^{j}d'_{i}}$ for all ${j=1,2,\ldots,n}$ . If there exists one connected graph G with ${\pi}$ as its degree sequence and ${c=(\sum_{i=1}^{n}d_{i})/2-n+1}$ , then G is called a c-cyclic graph and ${\pi}$ is called a c-cyclic degree sequence. Suppose ${\pi}$ is a non-increasing c-cyclic degree sequence and ${\pi'}$ is a non-increasing graphic degree sequence, if ${\pi \vartriangleleft \pi'}$ and there exists some t ${(2\leq t\leq n)}$ such that ${d'_{t}\geq c+1}$ and ${d_{i}=d'_{i}}$ for all ${t+1\leq i\leq n}$ , then the majorization ${\pi \vartriangleleft \pi'}$ is called a normal majorization. Let μ(G) be the signless Laplacian spectral radius, i.e., the largest eigenvalue of the signless Laplacian matrix of G. We use C π to denote the class of connected graphs with degree sequence π. If ${G \in C_{\pi}}$ and ${\mu(G)\geq \mu(G')}$ for any other ${G'\in C_{\pi}}$ , then we say G has greatest signless Laplacian radius in C π . In this paper, we prove that: Let π and π′ be two different non-increasing c-cyclic (c ≥ 0) degree sequences, G and G′ be the connected c-cyclic graphs with greatest signless Laplacian spectral radii in C π and C π', respectively. If ${\pi \vartriangleleft \pi'}$ and it is a normal majorization, then ${\mu(G) < \mu(G')}$ . This result extends the main result of Zhang (Discrete Math 308:3143–3150, 2008).  相似文献   

7.
We consider weak solutions to nonlinear elliptic systems in a W 1,p -setting which arise as Euler equations to certain variational problems. The solutions are assumed to be stationary in the sense that the differential of the variational integral vanishes with respect to variations of the dependent and independent variables. We impose new structure conditions on the coefficients which yield everywhere ${\mathcal{C}^{\alpha}}$ -regularity and global ${\mathcal{C}^{\alpha}}$ -estimates for the solutions. These structure conditions cover variational integrals like ${\int F(\nabla u)\; dx}$ with potential ${F(\nabla u):=\tilde F (Q_1(\nabla u),\ldots, Q_N(\nabla u))}$ and positively definite quadratic forms in ${\nabla u}$ defined as ${Q_i(\nabla u)=\sum_{\alpha \beta} a_i^{\alpha \beta} \nabla u^\alpha \cdot \nabla u^\beta}$ . A simple example consists in ${\tilde F(\xi_1,\xi_2):= |\xi_1|^{\frac{p}{2}} + |\xi_2|^{\frac{p}{2}}}$ or ${\tilde F(\xi_1,\xi_2):= |\xi_1|^{\frac{p}{4}}|\xi_2|^{\frac{p}{4}}}$ . Since the Q i need not to be linearly dependent our result covers a class of nondiagonal, possibly nonmonotone elliptic systems. The proof uses a new weighted norm technique with singular weights in an L p -setting.  相似文献   

8.
In this work, we consider the following second-order m-point boundary value problem on time scales $$\left\{\begin{array}{@{}l}(\phi_{p}(u^{\triangle}(t)))^{\nabla}+h(t)f(t,u(t),u^{\triangle }(t))=0,\quad t\in(0,+\infty)_{\mathbb{T}},\\[4pt]\displaystyle u(0)=\sum_{i=1}^{m-2}\alpha_{i}u(\eta_{i}),\qquad u^{\triangle}(+\infty)=\sum_{i=1}^{m-2}\beta_{i}u^{\triangle}(\eta_{i}).\end{array}\right.$$ We establish new criteria for the existence of at least three unbounded positive solutions. Our results are new even for the corresponding differential $({\mathbb{T}}={\mathbb{R}})$ , difference equation $({\mathbb{T}}={\mathbb{Z}})$ and for the general time-scale setting. An example is given to illustrate our results.  相似文献   

9.
We consider a variant of the Cops and Robber game, in which the robber has unbounded speed, i.e., can take any path from her vertex in her turn, but she is not allowed to pass through a vertex occupied by a cop. Let ${c_{\infty}(G)}$ denote the number of cops needed to capture the robber in a graph G in this variant. We characterize graphs G with c ??(G) =? 1, and give an ${O( \mid V(G)\mid^2)}$ algorithm for their detection. We prove a lower bound for c ?? of expander graphs, and use it to prove three things. The first is that if ${np \geq 4.2 {\rm log}n}$ then the random graph ${G= \mathcal{G}(n, p)}$ asymptotically almost surely has ${\eta_{1}/p \leq \eta_{2}{\rm log}(np)/p}$ , for suitable positive constants ${\eta_{1}}$ and ${\eta_{2}}$ . The second is that a fixed-degree random regular graph G with n vertices asymptotically almost surely has ${c_{\infty}(G) = \Theta(n)}$ . The third is that if G is a Cartesian product of m paths, then ${n/4km^2 \leq c_{\infty}(G) \leq n/k}$ , where ${n = \mid V(G)\mid}$ and k is the number of vertices of the longest path.  相似文献   

10.
In this paper, by using the Mawhin’s continuation theorem, we obtain an existence theorem for some higher order multi-point boundary value problems at resonance in the following form: $$\begin{array}{lll}x^{(n)}(t) = f(t,x(t),x'(t),\ldots,x^{(n-1)}(t))+e(t),\ t\in(0,1),\\x^{(i)}(0) = 0, i=0,1,\ldots,n-1,\ i\neq p, \\x^{(k)}(1) = \sum\limits_{j=1}^{m-2}{\beta_j}x^{(k)}(\eta_j),\end{array}$$ where ${f:[0,1]\times \mathbb{R}^n \to \mathbb{R}=(-\infty,+\infty)}$ is a continuous function, ${e(t)\in L^1[0,1], p, k\in\{0,1,\ldots,n-1\}}$ are fixed, m ≥ 3 for pk (m ≥ 4 for p > k), ${\beta_j \in \mathbb{R}, j=1,2,\ldots,m-2, 0 < \eta_1 < \eta_2 < \cdots < \eta_{m-2} <1 }$ . We give an example to demonstrate our results.  相似文献   

11.
The characteristic rank of a vector bundle ξ over a finite connected CW-complex X is by definition the largest integer ${k, 0 \leq k \leq \mathrm{dim}(X)}$ , such that every cohomology class ${x \in H^{j}(X;\mathbb{Z}_2), 0 \leq j \leq k}$ , is a polynomial in the Stiefel–Whitney classes w i (ξ). In this note we compute the characteristic rank of vector bundles over the Stiefel manifold ${V_k(\mathbb{F}^n), \mathbb{F} = \mathbb{R}, \mathbb{C}, \mathbb{H}}$ .  相似文献   

12.
Основной целью работ ы является обобщение одного результата Кратца и Т раутнера [4], известного для одном ерных функциональны х рядов, на кратные ряды. Этот рез ультат касается суммируемо сти функционального ряда почти всюду при слабых пред положениях. В частности, он примен им к суммируемости по Чезаро и по Риссу. Мы рассматриваемd-кр атный ряд $$\mathop \sum \limits_{k_1 = 0}^\infty \cdots \mathop \sum \limits_{k_d = 0}^\infty c_{k_1 ,...,k_d } f_{k_1 ,...,k_d } (x), \mathop \sum \limits_{k_1 = 0}^\infty \cdots \mathop \sum \limits_{k_d = 0}^\infty c_{k_1 ,...,k_d }^2< \infty $$ и предполагается, что функции \(f_{k_1 ,...,k_d } (x)\) интегрируе мы по пространству с полож ительной мерой и имеют почти вс юду ограниченные фун кции Лебега для метода суммирова ния Т. Метод Т определяетсяd-мерной матрицей \(T = \{ a_{m_1 ,...,m_d ;k_1 ,...,k_d } \} \) сл едующим образом: $$t_{m_1 ,...,m_d } (x) = \mathop \sum \limits_{k_1 = 0}^\infty \cdots \mathop \sum \limits_{k_d = 0}^\infty a_{m_1 ,...,m_d ;k_1 ,...,k_d } c_{k_1 ,...,k_d } f_{k_1 ,...,k_d } (x).$$ Эти средние существу ют, поскольку мы предп олагаем, что \(a_{m_1 ,...,m_d ;k_1 ,...,k_d } = 0\) ,если max(k 1,...,k d) достаточно вели к (в зависимости, конеч но, отm 1,...,m d). При некоторых дополнительных усло виях на матрицуТ (см. (7)– (9) в разделе 3) устанавлива ется почти всюду регулярная схо димость средних \(t_{m_1 ,...,m_d } (x) \user2{} \user2{(}m_1 \user2{,}...\user2{,}m_d \user2{)} \to \infty \) . Как вспомогательный результат, в работе об общается теорема Алексича [1] о сх одимости почти всюду некоторы х подпоследовательн остей частных сумм функцио нального ряда.  相似文献   

13.
Let G be a connected graph. The notion of rainbow connection number rc(G) of a graph G was introduced by Chartrand et al. (Math Bohem 133:85–98, 2008). Basavaraju et al. (arXiv:1011.0620v1 [math.CO], 2010) proved that for every bridgeless graph G with radius r, ${rc(G)\leq r(r+2)}$ and the bound is tight. In this paper, we show that for a connected graph G with radius r and center vertex u, if we let D r  = {u}, then G has r?1 connected dominating sets ${ D^{r-1}, D^{r-2},\ldots, D^{1}}$ such that ${D^{r} \subset D^{r-1} \subset D^{r-2} \cdots\subset D^{1} \subset D^{0}=V(G)}$ and ${rc(G)\leq \sum_{i=1}^{r} \max \{2i+1,b_i\}}$ , where b i is the number of bridges in E[D i , N(D i )] for ${1\leq i \leq r}$ . From the result, we can get that if ${b_i\leq 2i+1}$ for all ${1\leq i\leq r}$ , then ${rc(G)\leq \sum_{i=1}^{r}(2i+1)= r(r+2)}$ ; if b i  > 2i + 1 for all ${1\leq i\leq r}$ , then ${rc(G)= \sum_{i=1}^{r}b_i}$ , the number of bridges of G. This generalizes the result of Basavaraju et al. In addition, an example is given to show that there exist infinitely graphs with bridges whose rc(G) is only dependent on the radius of G, and another example is given to show that there exist infinitely graphs with bridges whose rc(G) is only dependent on the number of bridges in G.  相似文献   

14.
We study limit behavior for sums of the form $\frac{1}{|\Lambda_{L|}}\sum_{x\in \Lambda_{L}}u(t,x),$ where the field $\Lambda_L=\left\{x\in {\bf{Z^d}}:|x|\le L\right\}$ is composed of solutions of the parabolic Anderson equation $$u(t,x) = 1 + \kappa \mathop{\int}_{0}^{t} \Delta u(s,x){\rm d}s + \mathop{\int}_{0}^{t}u(s,x)\partial B_{x}(s). $$ The index set is a box in Z d , namely $\Lambda_{L} = \left\{x\in {\bf Z}^{\bf d} : |x| \leq L\right\}$ and L = L(t) is a nondecreasing function $L : [0,\infty)\rightarrow {\bf R}^{+}. $ We identify two critical parameters $\eta(1) < \eta(2)$ such that for $\gamma > \eta(1)$ and L(t) = eγ t , the sums $\frac{1}{|\Lambda_L|}\sum_{x\in \Lambda_L}u(t,x)$ satisfy a law of large numbers, or put another way, they exhibit annealed behavior. For $\gamma > \eta(2)$ and L(t) = eγ t , one has $\sum_{x\in \Lambda_L}u(t,x)$ when properly normalized and centered satisfies a central limit theorem. For subexponential scales, that is when $\lim_{t \rightarrow \infty} \frac{1}{t}\ln L(t) = 0,$ quenched asymptotics occur. That means $\lim_{t\rightarrow \infty}\frac{1}{t}\ln\left (\frac{1}{|\Lambda_L|}\sum_{x\in \Lambda_L}u(t,x)\right) = \gamma(\kappa),$ where $\gamma(\kappa)$ is the almost sure Lyapunov exponent, i.e. $\lim_{t\rightarrow \infty}\frac{1}{t}\ln u(t,x)= \gamma(\kappa).$ We also examine the behavior of $\frac{1}{|\Lambda_L|}\sum_{x\in \Lambda_L}u(t,x)$ for L = e γ t with γ in the transition range $(0,\eta(1))$   相似文献   

15.
Let \({f(z) = \sum_{n=1}^\infty a(n)e^{2\pi i nz} \in S_k^{\mathrm{new}}(\Gamma_0(N))}\) be a newform of even weight \({k \geq 2}\) that does not have complex multiplication. Then \({a(n) \in \mathbb{R}}\) for all n; so for any prime p, there exists \({\theta_p \in [0, \pi]}\) such that \({a(p) = 2p^{(k-1)/2} {\rm cos} (\theta_p)}\) . Let \({\pi(x) = \#\{p \leq x\}}\) . For a given subinterval \({[\alpha, \beta]\subset[0, \pi]}\) , the now-proven Sato–Tate conjecture tells us that as \({x \to \infty}\) , $$ \#\{p \leq x: \theta_p \in I\} \sim \mu_{ST} ([\alpha, \beta])\pi(x),\quad \mu_{ST} ([\alpha, \beta]) = \int\limits_{\alpha}^\beta \frac{2}{\pi}{\rm sin}^2(\theta) d\theta. $$ Let \({\epsilon > 0}\) . Assuming that the symmetric power L-functions of f are automorphic, we prove that as \({x \to \infty}\) , $$ \#\{p \leq x: \theta_p \in I\} = \mu_{ST} ([\alpha, \beta])\pi(x) + O\left(\frac{x}{(\log x)^{9/8-\epsilon}} \right), $$ where the implied constant is effectively computable and depends only on k,N, and \({\epsilon}\) .  相似文献   

16.
In this paper, we study the existence of positive solutions to the boundary value problem for the fractional differential system $$\left\{\begin{array}{lll} D_{0^+}^\beta \phi_p(D_{0^+}^\alpha u) (t) = f_1 (t, u (t), v (t)),\quad t \in (0, 1),\\ D_{0^+}^\beta \phi_p(D_{0^+}^\alpha v) (t) = f_2 (t, u (t), v(t)), \quad t \in (0, 1),\\ D_{0^+}^\alpha u(0)= D_{0^+}^\alpha u(1)=0,\; u (0) = 0, \quad u (1)-\Sigma_{i=1}^{m-2} a_{1i}\;u(\xi_{1i})=\lambda_1,\\ D_{0^+}^\alpha v(0)= D_{0^+}^\alpha v(1)=0,\; v (0) = 0, \quad v (1)-\Sigma_{i=1}^{m-2} a_{2i}\; v(\xi_{2i})=\lambda_2, \end{array}\right. $$ where ${1<\alpha,\beta\leq 2, 2 <\alpha + \beta\leq 4, D_{0^+}^\alpha}$ is the Riemann–Liouville fractional derivative of order α. By using the Leggett–Williams fixed point theorem in a cone, the existence of three positive solutions for nonlinear singular boundary value problems is obtained.  相似文献   

17.
We study the L p boundedness of the generalized Bochner–Riesz means S λ which are defined as $$S^{\lambda}f(x) = \mathcal{F}^{-1} \left[\left(1 - \rho \right)_{+}^{\lambda} \widehat{f} \right](x)$$ where ${\rho(\xi) = {\rm max}\{|\xi_{1}|, \ldots, |\xi_{\ell}|\}}$ for ${\xi = (\xi_{1},\ldots, \xi_{\ell}) \in \mathbb{R}^{{d}_{1}} \times \cdots \times \mathbb{R}^{{d}_{\ell}}}$ and ${\mathcal{F}^{-1}}$ is the inverse Fourier transform.  相似文献   

18.
We examine the validity of the Poincaré inequality for degenerate, second-order, elliptic operators H in divergence form on \({L_2(\mathbf{R}^{n}\times \mathbf{R}^{m})}\) . We assume the coefficients are real symmetric and \({a_1H_\delta\geq H\geq a_2H_\delta}\) for some \({a_1,a_2>0}\) where H δ is a generalized Gru?in operator, $$H_\delta=-\nabla_{x_1}\,|x_1|^{\left(2\delta_1,2\delta_1'\right)} \,\nabla_{x_1}-|x_1|^{\left(2\delta_2,2\delta_2'\right)} \,\nabla_{x_2}^2.$$ Here \({x_1 \in \mathbf{R}^n,\; x_2 \in \mathbf{R}^m,\;\delta_1,\delta_1'\in[0,1\rangle,\;\delta_2,\delta_2'\geq0}\) and \({|x_1|^{\left(2\delta,2\delta'\right)}=|x_1|^{2\delta}}\) if \({|x_1|\leq 1}\) and \({|x_1|^{\left(2\delta,2\delta'\right)}=|x_1|^{2\delta'}}\) if \({|x_1|\geq 1}\) . We prove that the Poincaré inequality, formulated in terms of the geometry corresponding to the control distance of H, is valid if n ≥ 2, or if n = 1 and \({\delta_1\vee\delta_1'\in[0,1/2\rangle}\) but it fails if n = 1 and \({\delta_1\vee\delta_1'\in[1/2,1\rangle}\) . The failure is caused by the leading term. If \({\delta_1\in[1/2, 1\rangle}\) , it is an effect of the local degeneracy \({|x_1|^{2\delta_1}}\) , but if \({\delta_1\in[0, 1/2\rangle}\) and \({\delta_1'\in [1/2,1\rangle}\) , it is an effect of the growth at infinity of \({|x_1|^{2\delta_1'}}\) . If n = 1 and \({\delta_1\in[1/2, 1\rangle}\) , then the semigroup S generated by the Friedrichs’ extension of H is not ergodic. The subspaces \({x_1\geq 0}\) and \({x_1\leq 0}\) are S-invariant, and the Poincaré inequality is valid on each of these subspaces. If, however, \({n=1,\; \delta_1\in[0, 1/2\rangle}\) and \({\delta_1'\in [1/2,1\rangle}\) , then the semigroup S is ergodic, but the Poincaré inequality is only valid locally. Finally, we discuss the implication of these results for the Gaussian and non-Gaussian behaviour of the semigroup S.  相似文献   

19.
For a nonempty graph G = (V, E), a signed edge-domination of G is a function ${f: E(G) \to \{1,-1\}}$ such that ${\sum_{e'\in N_{G}[e]}{f(e')} \geq 1}$ for each ${e \in E(G)}$ . The signed edge-domatic number of G is the largest integer d for which there is a set {f 1,f 2, . . . , f d } of signed edge-dominations of G such that ${\sum_{i=1}^{d}{f_i(e)} \leq 1}$ for every ${e \in E(G)}$ . This paper gives an original study on this concept and determines exact values for some special classes of graphs, such as paths, cycles, stars, fans, grids, and complete graphs with even order.  相似文献   

20.
Let V be a convex subset of a normed space and let a nondecreasing function α : [0, ∞) → [0, ∞) be given. A function ${f : V \rightarrow \mathbb{R}}$ is called α-midconvex if $$f\left(\frac{x+y}{2} \right)\leq \frac{f(x)+f(y)}{2}+\alpha(\|x-y\|) \quad \,{\rm for}\, x,y\in V.$$ It is known (Tabor in Control Cybern., 38/3:656–669, 2009) that if ${f : V \rightarrow \mathbb{R}}$ is α-midconvex, locally bounded above at every point of V then $$f(tx+(1-t)y)\leq tf(x)+(1-t)f(y)+P_\alpha(\|x-y\|) \quad \,{\rm for}\, x, y \in V,t \in [0,1],$$ where ${P_\alpha(r):=\sum_{k=0}^\infty \frac{1}{2^k} \alpha(2{\rm dist}(2^kr, \mathbb{Z}))}$ for ${r \in \mathbb{R}}$ . We show that under some additional assumptions the above estimation cannot be improved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号