首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
本文给出了平面应变情况下Ⅰ型问题裂纹尖端附近二阶渐近场的定解方程、求解方法和计算结果,并以某些细致的有限无解为依据,估计了二阶渐近场的幅值系数k2,分析了它对应力、应变分布和三轴张力的影响,变化规律以及在弹塑性断裂准则中的作用。  相似文献   

2.
本文从三维的塑性流动理论出发,导出了关于理想塑性固体平面应变问题的基本方程。利用这些方程,分析了不可压缩理想塑性固体的逐步扩展裂纹顶端的弹塑性场。得到了关于应力和速度的一阶渐近场。分析了弹性卸载区的演变过程和中心扇形区的发展过程。预示了出现二次塑性区的可能性。最后给出了关于应力场二阶渐近分析。  相似文献   

3.
本文在裂纹尖端场的应力分量仅仅是θ的函数的假设下,利用Hill屈服准则和平衡方程导出了正交异性理想塑性材料平面应力问题中裂纹尖端场的微分方程;在允许应力不连续线存在的情况下,把解析表达和数值计算法结合起来,得到了Ⅰ型和Ⅱ型裂纹尖端的应力场.  相似文献   

4.
夏霖  王自强 《中国科学A辑》1993,36(10):1092-1104
本文对平面应变状态下弹塑性幂硬化材料的裂纹尖端应力应交场,进行了严格的高阶渐近分析,得到了裂尖应力场渐近级数展开式前四项或前五项的全部解答.分析表明,当1.63.7时,弹性性质的影响将会进入比四阶更高的应力场,而此时四阶场则是独立的特征场.分析还表明,只要 n>1.6,三阶应力场总是不独立的,它的幅值 K)3不是与一阶场的 K1相关,就是同时与 K1和 K2相关.最后还将所得结果与已有的有限元数值结果作了比较,两者符合得相当好.  相似文献   

5.
应变梯度塑性Ⅰ,Ⅱ型平面应力裂纹的有限元解   总被引:5,自引:0,他引:5       下载免费PDF全文
将塑性应变梯度理论应用于幂硬化材料的裂纹尖端场,得出在小范围屈服条件下平面应力Ⅰ型和Ⅱ型裂纹的数值解.与现有的渐近解比较发现,Chen等人的文中裂尖附近渐近解的有效范围是0.05l量级(l为材料特征长度),远离此有效范围,有限元计算出Ⅰ型和Ⅱ型问题的应力场都趋向于经典的HRR解.在塑性区内,有限元计算只得到了应力占优的结果.  相似文献   

6.
王自强 《中国科学A辑》1987,30(5):498-508
本文从三维塑性流动理论出发,导出了理想塑性材料平面应变问题的基本方程.进而对扩展裂纹问题建立了完整的定解方程和速度场求解公式.已有的渐近方程只是预解方程和零级定解方程的组合.本文证实了已有的中心扇形区,虽然满足了渐近方程,但不能适应高阶渐近方程.  相似文献   

7.
刘波  高玉臣 《中国科学A辑》1995,38(5):514-522
用Gao的本构关系,分析了不可压缩橡胶类材料平面应变情况下缺口试件顶端和裂纹尖端的应力场,并根据应力场的渐近方程作了数值计算,给出了应力奇异性与缺口角度的关系曲线及应力随角坐标的变化曲线.  相似文献   

8.
本文对平面应变情况下不可压缩橡胶类材料裂纹尖端弹性场进行了有限变形分析.裂纹尖端场被分为收缩区和扩张区.借助于新的应变能函数和变形模式,推出了尖端场各区的渐近方程,得到了尖端场的完整描述.本文对奇异性作了讨论,得到了不可压缩橡胶类材料裂纹尖端应力及应变分布曲线,揭示了裂纹尖端应力应变场的特性.  相似文献   

9.
本文采用一种考虑相交剪切变形的陶瓷材料本构关系,对平面应变Ⅰ型定常扩展裂纹尖端场进行渐近分析.给出了裂纹尖端附近环形域内的应力、速率分布以及应力奇异性指数.对不同材料参数下的变化规律进行了详细的分析和讨论.  相似文献   

10.
Ⅱ型平面动力裂纹线场的弹塑性精确解   总被引:3,自引:1,他引:2  
本采用线场分析方法对理想弹塑性Ⅱ型平面应力裂纹裂纹线附近的应力场及弹塑性边界进行了精确分析,本完全放弃了小范围屈服条件,探讨了弹塑性边界上弹塑性应力场匹配条件的正确提法,通过将裂纹线附近塑性区应力场的通解(而不是过去采用的特解)与弹性应力场的精确解(而不是通常的裂尖应力强度因子K场)在裂纹线附近的弹塑性边界上匹配,本得出了塑性区应力场,塑性区长度及弹塑性边界的单位法向量在裂纹线附近的足够精确  相似文献   

11.
Ⅱ型平面应力裂纹线场的弹塑性精确解   总被引:1,自引:0,他引:1  
本文采用线场分析方法对理想弹塑性Ⅱ型平面应力裂纹裂纹线附近的应力场及弹塑性边界进行了精确分析。本文完全放弃了小范围屈服条件,探讨了弹塑性边界上弹塑性应力场匹配条件的正确提法,通过将裂纹线附近塑性区应力场的通解(而不是过去采用的特解)与弹性应力场的精确解(而不是通常的裂尖应力强度因子K场)在裂纹线附近的弹塑性边界上匹配,本文得出了塑性区应力场,塑性区长度及弹塑性边界的单位法向量在裂纹线附近的足够精确的表达式。  相似文献   

12.
圆形杂质对裂纹扩展的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
在单轴拉伸载荷作用下,运用分布位错方法对无限大平面内含有一个裂纹和一个任意方向的杂质问题进行求解,得到了裂纹尖端的应力强度因子、应力场以及应变能密度.利用最小应变能密度因子准则来判断裂纹扩展方向.结果显示:软杂质对裂纹尖端应力强度因子、应变能密度和应力场有增强作用,而硬杂质则具有屏蔽作用.在 -30°<θ<30°范围内,杂质对裂纹扩展方向的影响较小,而在 -90°<θ<-30°或30°<θ<90°范围内,杂质对裂纹扩展方向的影响较大.软杂质对裂纹扩展有吸引作用,而硬杂质具有排斥作用.  相似文献   

13.
建立了弹性-幂硬化蠕变性材料Ⅱ型界面裂纹准静态扩展的力学模型,求得了在裂纹表面自由和裂纹面有摩擦接触两种情况下,裂纹尖端应力场分离变量形式的渐近解.求解结果表明:Ⅱ型界面裂纹问题的应力、应变具有相同的奇异性;Ⅱ型界面裂纹尖端场不存在振荡奇异性;材料的幂硬化指数n和弹性模量比对裂纹尖端应力场幂硬化蠕变性材料区有着显著的影响,而弹性区仅受幂硬化指数n的影响,当n很大时,蠕变变形占主导地位,应力场趋于稳定,不随n的变化而变化;泊松比对裂纹尖端应力场的影响不明显.  相似文献   

14.
本文首先给出了一种用于描述材料软化,并存在有粘塑性的材料模型.用这种模型对反平面剪切型动态扩展状态下,裂纹尖端的弹粘塑性场进行了渐近分析,给出了弹性-应变软化粘塑性材料反平面剪切动态扩展裂纹尖端的渐近解方程.分析结果表明,在裂纹尖端应变具有(ln(R/r))1/(n+1)的奇异性,应力具有(ln(R/r))-n/(n+1)的奇异性.从而本文揭示了应变软化粘塑性材料反平面剪切动态扩展裂纹尖端的渐近行为.  相似文献   

15.
采用Bingham弹性-粘塑性模型对反平面剪切动态扩展裂纹尖端的应力应变场进行了渐近分析.给出了适当的位移模式、推导了渐近方程并且给出了数值解.分析和计算表明对于低粘性情况,裂纹尖端场具有对数奇异性.对于高粘性情况,裂纹尖场具有幂奇异性A·D2对于临界情况,两种奇异性可以相互转换.揭示了粘性在裂纹尖端场研究中的重要作用.  相似文献   

16.
李聪  胡斌  牛忠荣 《应用数学和力学》2021,42(12):1258-1275
提出了一种确定幂硬化材料反平面V形切口尖端应力和位移渐近解的主导项和高阶项的有效方法。首先通过在弹塑性理论基本方程中引入V形切口尖端应力场和位移场的渐近级数展开,建立以应力和位移为特征函数的非线性和线性常微分方程组。然后采用插值矩阵法求解常微分方程组,可得到多阶应力特征指数和其相对应的特征函数。该方法具有通用性强、精度高等优点,可处理任意开口角度和应变硬化指数的V形切口。典型算例验证了该方法的准确性和有效性。  相似文献   

17.
在裂纹尖端的理想塑性应力分量都只是θ的函数的条件下,利用平衡方程、Hill各向异性屈服条件及卸载应力应变关系,我们导出了缓慢定常扩展平面应变裂纹和反平面应变裂纹的尖端的各向异性塑性应力场的一般解析表达式.将这些一般解析表达式用于具体裂纹,我们就得到缓慢定常扩展Ⅰ型和Ⅲ型裂纹尖端的各向异性塑性应力场的解析表达式.对于各向同性塑性材料,缓慢扩展裂纹尖端的各向异性塑性应力场就变成理想塑性应力场.  相似文献   

18.
在裂纹尖端的应力分量都只是θ的函数的条件下,利用平衡方程和静水应力相关屈服条件,本文导出了静止平面应力裂纹尖端的静水应力相关理想塑性应力场的一般解析表达式.将这些一般解析表达式用于具体裂纹,我们就得到Ⅰ型和Ⅱ型裂纹尖端的静水应力相关理想塑性应力场的解析表达式.  相似文献   

19.
利用复变函数方法和积分方程理论研究了既含有圆形孔口又含有水平裂纹的无限大平面的平面弹性问题,将复杂的解析函数的边值问题化成了求解只在裂纹上的奇异积分方程的问题.此外,还给出了裂纹尖端附近的应力场和应力强度因子的公式.  相似文献   

20.
理想弹塑性I型平面应力裂纹线场的精确解   总被引:2,自引:0,他引:2  
本文纠正了过去在裂纹弹塑性场匹配上存在的问题,采用线场分析方法,通过求得塑性区应力场的合理解答,使之与弹性精确场在裂纹线附近的弹塑性边界上匹配。本文就远场受单向拉伸及双向拉伸的理想弹塑性平面应力裂纹无限板,在完全放弃了小范围屈服条件的情况下求得了塑性区应力场、塑性区长度以及弹塑性边界的单位法向量在裂纹线附近足够精确的表达式。结果表明,无论单向拉伸和双向拉伸,塑性区应力分量σyxy,塑性区长度以及弹塑性边界的单位法向量在裂纹线附近的表达式完全相同,但塑性区沿X方向的正应力σx存在差别。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号