首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
CVaR风险度量模型在投资组合中的运用   总被引:9,自引:1,他引:8  
风险价值(VaR)是近年来金融机构广泛运用的风险度量指标,条件风险价值(CVaR)是VaR的修正模型,也称为平均超额损失或尾部VaR,它比VaR具有更好的性质。在本中,我们将运用风险度量指标VaR和CVaR,提出一个新的最优投资组合模型。介绍了模型的算法,而且利用我国的股票市场进行了实证分析,验证了新模型的有效性,为制定合理的投资组合提供了一种新思路。  相似文献   

2.
本文对于信用资产组合的优化问题给出了一个稳健的模型,所建模型涉及了条件在险值(CVaR)风险度量以及具有补偿限制的随机线性规划框架,其思想是在CVaR与信用资产组合的重构费用之间进行权衡,并降低解对于随机参数的实现的敏感性.为求解相应的非线性规划,本文将基本模型转化为一系列的线性规划的求解问题.  相似文献   

3.
本文研究了具有强健性的证券投资组合优化问题.模型以最差条件在值风险为风险度量方法,并且考虑了交易费用对收益的影响.当投资组合的收益率概率分布不能准确确定但是在有界的区间内,尤其是在箱型区间结构和椭球区域结构内时,我们可以把具有强健性的证券投资组合优化问题的模型分别转化成线性规划和二阶锥规划形式.最后,我们用一个真实市场数据的算例来验证此方法.  相似文献   

4.
本文研究了具有强健性的证券投资组合优化问题.模型以最差条件在值风险为风险度量方法,并且考虑了交易费用对收益的影响.当投资组合的收益率概率分布不能准确确定但是在有界的区间内,尤其是在箱型区间结构和椭球区域结构内时,我们可以把具有强健性的证券投资组合优化问题的模型分别转化成线性规划和二阶锥规划形式.最后,我们用一个真实市场数据的算例来验证此方法.  相似文献   

5.
考虑了具有强健性的信用风险优化问题. 根据最差条件在值风险度量信用风险的方法,建立了信用风险优化问题的模型. 由于信用风险的损失分布存在不确定性,考虑了两类不确定性区间,即箱子型区间和椭球型区间. 把具有强健性的信用风险优化问题分别转化成线性规划问题和二阶锥规划问题. 最后,通过一个信用风险问题的例子来说明此模型的有效性.  相似文献   

6.
Conditional Value-at-Risk (CVaR) is a portfolio evaluation function having appealing features such as sub-additivity and convexity. Although the CVaR function is nondifferentiable, scenario-based CVaR minimization problems can be reformulated as linear programs (LPs) that afford solutions via widely-used commercial softwares. However, finding solutions through LP formulations for problems having many financial instruments and a large number of price scenarios can be time-consuming as the dimension of the problem greatly increases. In this paper, we propose a two-phase approach that is suitable for solving CVaR minimization problems having a large number of price scenarios. In the first phase, conventional differentiable optimization techniques are used while circumventing nondifferentiable points, and in the second phase, we employ a theoretically convergent, variable target value nondifferentiable optimization technique. The resultant two-phase procedure guarantees infinite convergence to optimality. As an optional third phase, we additionally perform a switchover to a simplex solver starting with a crash basis obtained from the second phase when finite convergence to an exact optimum is desired. This three phase procedure substantially reduces the effort required in comparison with the direct use of a commercial stand-alone simplex solver (CPLEX 9.0). Moreover, the two-phase method provides highly-accurate near-optimal solutions with a significantly improved performance over the interior point barrier implementation of CPLEX 9.0 as well, especially when the number of scenarios is large. We also provide some benchmarking results on using an alternative popular proximal bundle nondifferentiable optimization technique.  相似文献   

7.
Conditional Value at Risk (CVaR) is widely used in portfolio optimization as a measure of risk. CVaR is clearly dependent on the underlying probability distribution of the portfolio. We show how copulas can be introduced to any problem that involves distributions and how they can provide solutions for the modeling of the portfolio. We use this to provide the copula formulation of the CVaR of a portfolio. Given the critical dependence of CVaR on the underlying distribution, we use a robust framework to extend our approach to Worst Case CVaR (WCVaR). WCVaR is achieved through the use of rival copulas. These rival copulas have the advantage of exploiting a variety of dependence structures, symmetric and not. We compare our model against two other models, Gaussian CVaR and Worst Case Markowitz. Our empirical analysis shows that WCVaR can asses the risk more adequately than the two competitive models during periods of crisis.  相似文献   

8.
条件风险值问题是研究信用风险最优化的一种新的模型,本文研究了一类多目标条件风险值问题等价定理,我们引入了多个损失函数在对应的置信水平下关于一个证券组合的α-VaR损失值(最小信用风险值)和α-CVaR损失值(最小信用风险值对应的条件期望损失值或条件风险价值度量)概念,为了求得α-CVaR损失值下的弱:Pareto有效解,我们证明了它等价于求解另一个多目标规划问题的Pateto有效解,这样使得问题的求解变得简单.  相似文献   

9.
Integrated risk management for financial institutions requires an approach for aggregating risk types (such as market and credit) whose distributional shapes vary considerably. The financial institutions often ignore risks’ coupling influence so as to underestimate the financial risks. We constructed a copula-based Conditional Value-at-Risk (CVaR) model for market and credit risks. This technique allows us to incorporate realistic marginal distributions that capture essential empirical features of these risks, such as skewness and fat-tails while allowing for a rich dependence structure. Finally, the numerical simulation method is used to implement the model. Our results indicate that the coupled risks for the listed company’s stock maybe are undervalued if credit risk is ignored, especially for the listed company with bad credit quality.  相似文献   

10.
研究了Duarte提出的投资组合优化统一模型及条件风险价值(CVaR),分析了以CVaR为风险度量的投资组合优化模型的具体形式,建立了统一七种模型的投资组合优化统一模型,并发现统一模型是一个凸二次规划问题.  相似文献   

11.
This paper focuses on the computation issue of portfolio optimization with scenario-based CVaR. According to the semismoothness of the studied models, a smoothing technology is considered, and a smoothing SQP algorithm then is presented. The global convergence of the algorithm is established. Numerical examples arising from the allocation of generation assets in power markets are done. The computation efficiency between the proposed method and the linear programming (LP) method is compared. Numerical results show that the performance of the new approach is very good. The remarkable characteristic of the new method is threefold. First, the dimension of smoothing models for portfolio optimization with scenario-based CVaR is low and is independent of the number of samples. Second, the smoothing models retain the convexity of original portfolio optimization problems. Third, the complicated smoothing model that maximizes the profit under the CVaR constraint can be reduced to an ordinary optimization model equivalently. All of these show the advantage of the new method to improve the computation efficiency for solving portfolio optimization problems with CVaR measure.  相似文献   

12.
针对债券投资组合中的风险度量难题,用CVaR作为风险度量方法,构建了基于CVaR的债券投资组合优化模型.采用历史模拟算法处理模型中的随机收益率向量,将随机优化模型转化为确定性优化模型,并且证明了算法的收敛性.通过线性化技术处理CVaR中的非光滑函数,将该模型转化为一般的线性规划模型.结合10只债券的组合投资实例,验证了模型与算法的有效性.  相似文献   

13.
14.
The paper presents a copula-based extension of Conditional Value-at-Risk and its application to portfolio optimization. Copula-based conditional value-at-risk (CCVaR) is a scalar risk measure for multivariate risks modeled by multivariate random variables. It is assumed that the univariate risk components are perfect substitutes, i.e., they are expressed in the same units. CCVaR is a quantile risk measure that allows one to emphasize the consequences of more pessimistic scenarios. By changing the level of a quantile, the measure permits to parameterize prudent attitudes toward risk ranging from the extreme risk aversion to the risk neutrality. In terms of definition, CCVaR is slightly different from popular and well-researched CVaR. Nevertheless, this small difference allows one to efficiently solve CCVaR portfolio optimization problems based on the full information carried by a multivariate random variable by employing column generation algorithm.  相似文献   

15.
We evaluate conditional value-at-risk (CVaR) as a risk measure in data-driven portfolio optimization. We show that portfolios obtained by solving mean-CVaR and global minimum CVaR problems are unreliable due to estimation errors of CVaR and/or the mean, which are magnified by optimization. This problem is exacerbated when the tail of the return distribution is made heavier. We conclude that CVaR, a coherent risk measure, is fragile in portfolio optimization due to estimation errors.  相似文献   

16.
Computing optimal stochastic portfolio execution strategies under an appropriate risk consideration presents many computational challenges. Using Monte Carlo simulations, we investigate an approach based on smoothing and parametric rules to minimize mean and Conditional Value-at-Risk (CVaR) of the execution cost. The proposed approach reduces computational complexity by smoothing the nondifferentiability arising from the simulation discretization and by employing a parametric representation of a stochastic strategy. We further handle constraints using a smoothed exact penalty function. Using the downside risk as an example, we show that the proposed approach can be generalized to other risk measures. In addition, we computationally illustrate the effect of including risk on the stochastic optimal execution strategy.  相似文献   

17.
Benati and Rizzi [S. Benati, R. Rizzi, A mixed integer linear programming formulation of the optimal mean/Value-at-Risk portfolio problem, European Journal of Operational Research 176 (2007) 423–434], in a recent proposal of two linear integer programming models for portfolio optimization using Value-at-Risk as the measure of risk, claimed that the two counterpart models are equivalent. This note shows that this claim is only partly true. The second model attempts to minimize the probability of the portfolio return falling below a certain threshold instead of minimizing the Value-at-Risk. However, the discontinuity of real-world probability values makes the second model impractical. An alternative model with Value-at-Risk as the objective is thus proposed.  相似文献   

18.
A sophisticated approach for computing the total economic capital needed for various stochastically dependent risk types is the bottom-up approach. In this approach, usually, market and credit risks of financial instruments are modeled simultaneously. As integrating market risk factors into standard credit portfolio models increases the computational burden of calculating risk measures, it is analyzed to which extent importance sampling techniques previously developed either for pure market portfolio models or for pure credit portfolio models can be successfully applied to integrated market and credit portfolio models. Specific problems which arise in this context are discussed. The effectiveness of these techniques is tested by numerical experiments for linear and non-linear portfolios.  相似文献   

19.
This note is focused on computational efficiency of the portfolio selection models based on the Conditional Value at Risk (CVaR) risk measure. The CVaR measure represents the mean shortfall at a specified confidence level and its optimization may be expressed with a Linear Programming (LP) model. The corresponding portfolio selection models can be solved with general purpose LP solvers. However, in the case of more advanced simulation models employed for scenario generation one may get several thousands of scenarios. This may lead to the LP model with huge number of variables and constraints thus decreasing the computational efficiency of the model. To overcome this difficulty some alternative solution approaches are explored employing cutting planes or nondifferential optimization techniques among others. Without questioning importance and quality of the introduced methods we demonstrate much better performances of the simplex method when applied to appropriately rebuilt CVaR models taking advantages of the LP duality.  相似文献   

20.
Index tracking problems are concerned in this paper. A CVaR risk constraint is introduced into general index tracking model to control the downside risk of tracking portfolios that consist of a subset of component stocks in given index. Resulting problem is a mixed 0?C1 and non-differentiable linear programming problem, and can be converted into a mixed 0?C1 linear program so that some existing optimization software such as CPLEX can be used to solve the problem. It is shown that adding the CVaR constraint will have no impact on the optimal tracking portfolio when the index has good (return increasing) performance, but can limit the downside risk of the optimal tracking portfolio when index has bad (return decreasing) performance. Numerical tests on Hang Seng index tracking and FTSE 100 index tracking show that the proposed index tracking model is effective in controlling the downside risk of the optimal tracking portfolio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号