首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some new portfolio optimization models are formulated by adopting the sample median instead of the sample mean as the investment efficiency measure. The median is a robust statistic, which is less affected by outliers than the mean, and in portfolio models this is particularly relevant as data are often characterized by attributes such as skewness, fat tails and jumps, which may strongly bias the mean estimate. As in mean/variance optimization, the portfolio problems are formulated as finding the optimal weights, for example, wealth allocation, which maximize the portfolio median, with risk constrained by some risk measure, respectively, the Value-at-Risk, the Conditional Value-at-Risk, the Mean Absolute Deviation and the Maximum Loss, for a whole of four different models. All these models are formulated as mixed integer linear programming problems, which, at least for moderate sized problems, are efficiently solved by standard software. Models are tested on real financial data, compared to some benchmark portfolios, and found to give good results in terms of realized profits. An important feature is greater portfolio diversification than that obtained with other portfolio models.  相似文献   

2.
本文研究了具有强健性的证券投资组合优化问题.模型以最差条件在值风险为风险度量方法,并且考虑了交易费用对收益的影响.当投资组合的收益率概率分布不能准确确定但是在有界的区间内,尤其是在箱型区间结构和椭球区域结构内时,我们可以把具有强健性的证券投资组合优化问题的模型分别转化成线性规划和二阶锥规划形式.最后,我们用一个真实市场数据的算例来验证此方法.  相似文献   

3.
In classical two-stage stochastic programming the expected value of the total costs is minimized. Recently, mean-risk models - studied in mathematical finance for several decades - have attracted attention in stochastic programming. We consider Conditional Value-at-Risk as risk measure in the framework of two-stage stochastic integer programming. The paper addresses structure, stability, and algorithms for this class of models. In particular, we study continuity properties of the objective function, both with respect to the first-stage decisions and the integrating probability measure. Further, we present an explicit mixed-integer linear programming formulation of the problem when the probability distribution is discrete and finite. Finally, a solution algorithm based on Lagrangean relaxation of nonanticipativity is proposed. Received: April, 2004  相似文献   

4.
本文研究了具有强健性的证券投资组合优化问题.模型以最差条件在值风险为风险度量方法,并且考虑了交易费用对收益的影响.当投资组合的收益率概率分布不能准确确定但是在有界的区间内,尤其是在箱型区间结构和椭球区域结构内时,我们可以把具有强健性的证券投资组合优化问题的模型分别转化成线性规划和二阶锥规划形式.最后,我们用一个真实市场数据的算例来验证此方法.  相似文献   

5.
利用松弛最优邻近解临域整数点搜索法作过滤条件,建立求解整数规划的新方法——直接搜索算法,利用直接搜索算法并借助Matlab软件求解整数线性规划投资组合模型.数值结果表明了模型的建立与提出方法的有效性.  相似文献   

6.
This paper presents a method for solving multiperiod investment models with downside risk control characterized by the portfolio’s worst outcome. The stochastic programming problem is decomposed into two subproblems: a nonlinear optimization model identifying the optimal terminal wealth distribution and a stochastic linear programming model replicating the identified optimal portfolio wealth. The replicating portfolio coincides with the optimal solution to the investor’s problem if the market is frictionless. The multiperiod stochastic linear programming model tests for the absence of arbitrage opportunities and its dual feasible solutions generate all risk neutral probability measures. When there are constraints such as liquidity or position requirements, the method yields approximate portfolio policies by minimizing the initial cost of the replication portfolio. A numerical example illustrates the difference between the replicating result and the optimal unconstrained portfolio.  相似文献   

7.
本文对于信用资产组合的优化问题给出了一个稳健的模型,所建模型涉及了条件在险值(CVaR)风险度量以及具有补偿限制的随机线性规划框架,其思想是在CVaR与信用资产组合的重构费用之间进行权衡,并降低解对于随机参数的实现的敏感性.为求解相应的非线性规划,本文将基本模型转化为一系列的线性规划的求解问题.  相似文献   

8.
Markowitz formulated the portfolio optimization problem through two criteria: the expected return and the risk, as a measure of the variability of the return. The classical Markowitz model uses the variance as the risk measure and is a quadratic programming problem. Many attempts have been made to linearize the portfolio optimization problem. Several different risk measures have been proposed which are computationally attractive as (for discrete random variables) they give rise to linear programming (LP) problems. About twenty years ago, the mean absolute deviation (MAD) model drew a lot of attention resulting in much research and speeding up development of other LP models. Further, the LP models based on the conditional value at risk (CVaR) have a great impact on new developments in portfolio optimization during the first decade of the 21st century. The LP solvability may become relevant for real-life decisions when portfolios have to meet side constraints and take into account transaction costs or when large size instances have to be solved. In this paper we review the variety of LP solvable portfolio optimization models presented in the literature, the real features that have been modeled and the solution approaches to the resulting models, in most of the cases mixed integer linear programming (MILP) models. We also discuss the impact of the inclusion of the real features.  相似文献   

9.
In this paper, we introduce a mixed integer stochastic programming approach to mean–variance post-tax portfolio management. This approach takes into account of risk in a multistage setting and allows general withdrawals from original capital. The uncertainty on asset returns is specified as a scenario tree. The risk across scenarios is addressed using the probabilistic approach of classical stochastic programming. The tax rules are used with stochastic linear and mixed integer quadratic programming models to compute an overall tax and return-risk efficient multistage portfolio. The incorporation of the risk term in the model provides robustness and leads to diversification over wrappers and assets within each wrapper. General withdrawals and risk aversion have an impact on the distribution of assets among wrappers. Computational results are presented using a study with different scenario trees in order to show the performance of these models.  相似文献   

10.
This paper introduces a multiperiod model for the optimal selection of a financial portfolio of options linked to a single index. The objective of the model is to maximize the expected return of the portfolio under constraints limiting its Value-at-Risk. We rely on scenarios to represent future security prices. The model contains several interesting features, like the consideration of transaction costs, bid-ask spreads, arbitrage-free option pricing, and the possibility to rebalance the portfolio with options introduced at the start of each period. The resulting mixed integer programming model is applied to realistic test instances involving options on the S&P500 index. In spite of the large size and of the numerical difficulty of this model, near-optimal solutions can be computed by a standard branch-and-cut solver or by a specialized heuristic. The structure and the financial features of the selected portfolios are also investigated.  相似文献   

11.
Credit risk optimization with Conditional Value-at-Risk criterion   总被引:27,自引:0,他引:27  
This paper examines a new approach for credit risk optimization. The model is based on the Conditional Value-at-Risk (CVaR) risk measure, the expected loss exceeding Value-at-Risk. CVaR is also known as Mean Excess, Mean Shortfall, or Tail VaR. This model can simultaneously adjust all positions in a portfolio of financial instruments in order to minimize CVaR subject to trading and return constraints. The credit risk distribution is generated by Monte Carlo simulations and the optimization problem is solved effectively by linear programming. The algorithm is very efficient; it can handle hundreds of instruments and thousands of scenarios in reasonable computer time. The approach is demonstrated with a portfolio of emerging market bonds. Received: November 1, 1999 / Accepted: October 1, 2000?Published online December 15, 2000  相似文献   

12.
This paper considers several probability maximization models for multi-scenario portfolio selection problems in the case that future returns in possible scenarios are multi-dimensional random variables. In order to consider occurrence probabilities and decision makers’ predictions with respect to all scenarios, a portfolio selection problem setting a weight with flexibility to each scenario is proposed. Furthermore, by introducing aspiration levels to occurrence probabilities or future target profit and maximizing the minimum aspiration level, a robust portfolio selection problem is considered. Since these problems are formulated as stochastic programming problems due to the inclusion of random variables, they are transformed into deterministic equivalent problems introducing chance constraints based on the stochastic programming approach. Then, using a relation between the variance and absolute deviation of random variables, our proposed models are transformed into linear programming problems and efficient solution methods are developed to obtain the global optimal solution. Furthermore, a numerical example of a portfolio selection problem is provided to compare our proposed models with the basic model.  相似文献   

13.
In this paper, we review recent advances in the distributional analysis of mixed integer linear programs with random objective coefficients. Suppose that the probability distribution of the objective coefficients is incompletely specified and characterized through partial moment information. Conic programming methods have been recently used to find distributionally robust bounds for the expected optimal value of mixed integer linear programs over the set of all distributions with the given moment information. These methods also provide additional information on the probability that a binary variable attains a value of 1 in the optimal solution for 0–1 integer linear programs. This probability is defined as the persistency of a binary variable. In this paper, we provide an overview of the complexity results for these models, conic programming formulations that are readily implementable with standard solvers and important applications of persistency models. The main message that we hope to convey through this review is that tools of conic programming provide important insights in the probabilistic analysis of discrete optimization problems. These tools lead to distributionally robust bounds with applications in activity networks, vertex packing, discrete choice models, random walks and sequencing problems, and newsvendor problems.  相似文献   

14.
In this paper, we consider an extension of the Markovitz model, in which the variance has been replaced with the Value-at-Risk. So a new portfolio optimization problem is formulated. We showed that the model leads to an NP-hard problem, but if the number of past observation T or the number of assets K are low, e.g. fixed to a constant, polynomial time algorithms exist. Furthermore, we showed that the problem can be formulated as an integer programming instance. When K and T are large and αVaR is small—as common in financial practice—the computational results show that the problem can be solved in a reasonable amount of time.  相似文献   

15.
In a multistage stochastic programming framework, we develop a new method for finding an approximated portfolio allocation solution to the nested Conditional Value-at-Risk model when asset log returns are stagewise dependent. We describe asset log returns through a single-factor model where the driving factor is the market-index log return modeled by a Generalized Autoregressive Conditional Heteroskedasticity process to take into account the serial dependence usually observed. To solve the nested Conditional Value-at-Risk model, we implement a backward induction scheme coupled with cubic spline interpolation that reduces the computational complexity of the optimal portfolio allocation and allows to treat problems otherwise unmanageable.  相似文献   

16.
Selecting Portfolios with Fixed Costs and Minimum Transaction Lots   总被引:7,自引:0,他引:7  
The original Markowitz model of portfolio selection has received a widespread theoretical acceptance and it has been the basis for various portfolio selection techniques. Nevertheless, this normative model has found relatively little application in practice when some additional features, such as fixed costs and minimum transaction lots, are relevant in the portfolio selection problem. In this paper different mixed-integer linear programming models dealing with fixed costs and possibly minimum lots are introduced. Due to the high computational complexity of the models, heuristic procedures, based on the construction and optimal solution of mixed integer subproblems, are proposed. Computational results obtained using data from the Milan Stock Exchange show how the proposed heuristics yield very good solutions in a short computational time and make possible some interesting financial conclusions on the impact of fixed costs and minimum lots on portfolio composition.  相似文献   

17.
In this paper, we discuss portfolio selection problem in a fuzzy uncertain environment. Based on the Fullér’s and Zhang’s notations, we discuss some properties of weighted lower and upper possibilistic means and variances as in probability theory. We further present two weighted possibilistic portfolio selection models with bounded constraint, which can be transformed to linear programming problems under the assumption that the returns of assets are trapezoidal fuzzy numbers. At last, a numerical example is given to illustrate our proposed effective means and approaches.  相似文献   

18.
A zero-one integer linear programming model is proposed for selecting and scheduling an optimal project portfolio, based on the organisation's objectives and constraints such as resource limitations and interdependence among projects. The model handles some of the issues that frequently arise in real world applications but are not addressed by previously suggested models, such as situations in which the amount of available and consumed resources varies in different periods. It also allows for interactive adjustment following the optimisation process, to provide decision makers a method for controlling portfolio selection, based on criteria that may be difficult to elicit directly. It is critical for such a system to provide fast evaluation of alternatives the decision makers may want to examine, and this requirement is addressed. The proposed model not only suggests projects that should be incorporated in the optimal portfolio, but it also determines the starting period for each project. Scheduling considerations can have a major impact on the combination of projects that can be incorporated in the portfolio, and may allow the addition of certain projects to the portfolio that could not have been selected otherwise. An example problem is described and solved with the proposed model, and some areas for future research are discussed.  相似文献   

19.
A mathematical model of portfolio optimization is usually quantified with mean-risk models offering a lucid form of two criteria with possible trade-off analysis. In the classical Markowitz model the risk is measured by a variance, thus resulting in a quadratic programming model. Following Sharpe’s work on linear approximation to the mean-variance model, many attempts have been made to linearize the portfolio optimization problem. There were introduced several alternative risk measures which are computationally attractive as (for discrete random variables) they result in solving linear programming (LP) problems. Typical LP computable risk measures, like the mean absolute deviation (MAD) or the Gini’s mean absolute difference (GMD) are symmetric with respect to the below-mean and over-mean performances. The paper shows how the measures can be further combined to extend their modeling capabilities with respect to enhancement of the below-mean downside risk aversion. The relations of the below-mean downside stochastic dominance are formally introduced and the corresponding techniques to enhance risk measures are derived.The resulting mean-risk models generate efficient solutions with respect to second degree stochastic dominance, while at the same time preserving simplicity and LP computability of the original models. The models are tested on real-life historical data.The research was supported by the grant PBZ-KBN-016/P03/99 from The State Committee for Scientific Research.  相似文献   

20.
In typical robust portfolio selection problems, one mainly finds portfolios with the worst-case return under a given uncertainty set, in which asset returns can be realized. A too large uncertainty set will lead to a too conservative robust portfolio. However, if the given uncertainty set is not large enough, the realized returns of resulting portfolios will be outside of the uncertainty set when an extreme event such as market crash or a large shock of asset returns occurs. The goal of this paper is to propose robust portfolio selection models under so-called “ marginal+joint” ellipsoidal uncertainty set and to test the performance of the proposed models. A robust portfolio selection model under a “marginal + joint” ellipsoidal uncertainty set is proposed at first. The model has the advantages of models under the separable uncertainty set and the joint ellipsoidal uncertainty set, and relaxes the requirements on the uncertainty set. Then, one more robust portfolio selection model with option protection is presented by combining options into the proposed robust portfolio selection model. Convex programming approximations with second-order cone and linear matrix inequalities constraints to both models are derived. The proposed robust portfolio selection model with options can hedge risks and generates robust portfolios with well wealth growth rate when an extreme event occurs. Tests on real data of the Chinese stock market and simulated options confirm the property of both the models. Test results show that (1) under the “ marginal+joint” uncertainty set, the wealth growth rate and diversification of robust portfolios generated from the first proposed robust portfolio model (without options) are better and greater than those generated from Goldfarb and Iyengar’s model, and (2) the robust portfolio selection model with options outperforms the robust portfolio selection model without options when some extreme event occurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号