首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper investigates scheduling problems with simultaneous considerations of deterioration effects and deteriorating multi-maintenance activities on unrelated parallel machines. We examine two models of scheduling with the deterioration effect, namely the job-dependent and position-dependent deterioration model and the time-dependent deterioration model. We assume that each machine may be subject to several maintenance activities over the scheduling horizon, and the duration of maintenance on a machine depends on its running time. Moreover, due to the restriction of the budget of maintenance, the upper bound of the total maintenance frequencies on all the machines is assumed to be known in advance. The objective is to find jointly the optimal maintenance frequencies, the optimal maintenance positions, and the optimal job sequences such that the total completion time is minimized. If the number of machines is fixed, we introduce polynomial time solutions for all the versions of the problem under study.  相似文献   

2.
This paper studies the single machine scheduling problems with learning effect and deteriorating jobs simultaneously. In this model, the processing times of jobs are defined as functions of their starting times and positions in a sequence. It is shown that even with the introduction of learning effect and deteriorating jobs to job processing times, the makespan, the total completion time and the sum of the kkth power of completion times minimization problems remain polynomially solvable, respectively. But for the following objective functions: the total weighted completion time and the maximum lateness, this paper proves that the shortest weighted processing time first (WSPT) rule and the earliest due-date first (EDD) rule can construct the optimal sequence under some special cases, respectively.  相似文献   

3.
同时具有学习效应和退化效应的单机排序问题   总被引:1,自引:0,他引:1  
本文给出了一种同时具有一般化学习效应和退化效应的单机排序模型。在此模型中,工件的实际加工时间既与工件所在位置又与其开工时间有关,且工件在加工之后具有一个配送时间。其中学习效应是工件所在位置的函数,退化效应是工件开工时间的函数。证明了极小化最大完工时间和极小化总完工时间问题是多项式可解的,在满足一定的条件下,极小化加权总完工时间和极小化最大延误问题也是多项式可解的。推广了一些已有文献中的结论。  相似文献   

4.
并行分批排序起源于半导体芯片制造过程。在并行分批排序中,工件可成批加工,批加工机器最多可同时加工B个工件,批的加工时间为批中所有工件的最大工时。首先根据传统的机器环境和目标函数对并行分批排序已有成果进行分类介绍,主要为单机和平行机的机器环境,以及极小化最大完工时间、极小化总完工时间、极小化最大延迟、极小化误工工件数、极小化总延误和极小化最大延误的目标函数;然后梳理了由基本问题所衍生出来的具有新特点的16类新型并行分批排序,包括差异尺寸工件、多目标、工件加工时间或顺序存在限制、考虑费用和具有特殊机制等情况;最后展望未来的研究方向。  相似文献   

5.
This paper studies a single machine scheduling problem simultaneously with deteriorating jobs and learning effects. The objectives are to minimize the makespan and the number of tardy jobs, respectively. Two polynomial time algorithms are proposed to solve these problems optimally.  相似文献   

6.
Scheduling with deteriorating jobs and learning effects has been widely studied. However, multi-agent scheduling with simultaneous considerations of deteriorating jobs and learning effects has hardly been considered until now. In view of this, we consider a two-agent single-machine scheduling problem involving deteriorating jobs and learning effects simultaneously. In the proposed model, given a schedule, we assume that the actual processing time of a job of the first agent is a function of position-based learning while the actual processing time of a job of the second agent is a function of position-based deterioration. The objective is to minimize the total weighted completion time of the jobs of the first agent with the restriction that no tardy job is allowed for the second agent. We develop a branch-and-bound and several simulated annealing algorithms to solve the problem. Computational results show that the proposed algorithms are efficient in producing near-optimal solutions.  相似文献   

7.
In this paper, we consider two single-machine rescheduling problems with linear deteriorating jobs under disruption. By a deteriorating jobs, we mean that the actual processing time of the job is an increasing function of its starting time. The two problems correspond to two different increasing linear function. Rescheduling means a set of original jobs has already been scheduled to minimize some classical objective, then a new set of jobs arrives and creates a disruption. We consider the rescheduling problem to minimize the total completion time under a limit of the disruption from the original scheduling. For each problem, we consider two versions. For each version, the polynomial algorithms are proposed, respectively.  相似文献   

8.
In this paper we consider the flow shop scheduling problems with the effects of learning and deterioration. In this model the processing times of a job is defined as a function of its starting time and position in a sequence. The scheduling objective functions are makespan and total completion time. We prove that even with the introduction of learning effect and deteriorating jobs to job processing times, some special flow shop scheduling problems remain polynomially solvable.  相似文献   

9.
《Applied Mathematical Modelling》2014,38(21-22):5231-5238
In this study we consider unrelated parallel machines scheduling problems with learning effect and deteriorating jobs, in which the actual processing time of a job is a function of joint time-dependent deterioration and position-dependent learning. The objective is to determine the jobs assigned to corresponding each machine and the corresponding optimal schedule to minimize a cost function containing total completion (waiting) time, total absolute differences in completion (waiting) times and total machine load. If the number of machines is a given constant, we show that the problems can be solved in polynomial time under the time-dependent deterioration and position-dependent learning model.  相似文献   

10.
The paper deals with the single machine scheduling problems with a time-dependent learning effect and deteriorating jobs. By the effects of time-dependent learning and deterioration, we mean that the processing time of a job is defined by function of its starting time and total normal processing time of jobs in front of it in the sequence. It is shown that even with the introduction of a time-dependent learning effect and deteriorating jobs to job processing times, the single machine makespan minimization problem remain polynomially solvable. But for the total completion time minimization problem, the classical shortest processing time first rule or largest processing time first rule cannot give an optimal solution.  相似文献   

11.
考虑带有退化效应和序列相关运输时间的单机排序问题. 工件的加工时间是其开工时间的简单线性增加函数. 当机器单个加工工件时, 极小化最大完工时间、(加权)总完工时间和总延迟问题被证明是多项式可解的, EDD序对于极小化最大延迟问题不是最优排序, 另外, 就交货期和退化率一致情形给出了一最优算法. 当机器可分批加工工件时, 分别就极小化最大完工时间和加权总完工时间问题提出了多项式时间最优算法.  相似文献   

12.
In a recent paper, Lee and Wu [W.-C. Lee, C.-C. Wu, A note on single-machine group scheduling problems with position-based learning effect, Appl. Math. Model. 33 (2009) 2159–2163] proposed a new group scheduling learning model where the learning effect not only depends on the job position, but also depends on the group position. They investigate the makespan and the total completion time minimization problems on a single-machine. As for the total completion time minimization problem, they assumed that the numbers of jobs in each group are the same and the group normal setup and the job normal processing times are agreeable. Under the assumption conditions, they showed that the total completion time minimization problem can be optimally solved in polynomial time solution. However, the assumption conditions for the total completion time minimization problem do not reflect actual practice in many manufacturing processes. Hence, in this note, we propose other agreeable conditions and show that the total completion time minimization problem remains polynomially solvable under the agreeable conditions.  相似文献   

13.
针对工件同时具有学习和退化效应、机器具有可用性限制这一问题,建立可预见性单机干扰管理模型。在这一模型中,工件的加工时间是既与工件所排的加工位置又与工件开始加工的时间有关的函数。同时,在生产过程中由于机器发生故障或定期维修等扰动事件导致机器在某段时间内不能加工工件。目标是在同时考虑原目标函数和由扰动造成的偏离函数的情况下,构建一个新的最优时间表序列。根据干扰度量函数的不同研究了两个问题,第一个问题的目标函数是极小化总完工时间与总误工时间的加权和;第二个问题的目标函数是极小化总完工时间与总提前时间的加权和。对于所研究的问题,首先证明了最优排序具有的性质,然后建立了相应的拟多项式时间动态规划算法。  相似文献   

14.
In this paper parallel identical machines scheduling problems with deteriorating jobs and learning effects are considered. In this model, job processing times are defined by functions of their starting times and positions in the sequence. We concentrate on two goals separately, namely, minimizing a cost function containing total completion time and total absolute differences in completion times; minimizing a cost function containing total waiting time and total absolute differences in waiting times. We show that the problems remain polynomially solvable under the proposed model.  相似文献   

15.
In this paper we consider identical parallel machines scheduling problems with a deteriorating maintenance activity. In this model, each machine has a deteriorating maintenance activity, that is, delaying the maintenance increases the time required to perform it. We need to make a decision on when to schedule the rate-modifying activities and the sequence of jobs to minimize some objective function. We concentrate on two goals separately, namely, minimizing the total absolute differences in completion times (TADC) and the total absolute differences in waiting times (TADW). We show that the problems remain polynomially solvable under the proposed model.  相似文献   

16.
近来具有学习效应的机器排序问题收到广泛的关注.对于机器排序中工件的实际加工来说,与工件加工位置有关的学习模型更具有现实性.本文研究了工件加工位置和与已经加工过的工件之和有关的一般学习效应模型.首先证明文献中与位置和已经加工过的工件加工时间之和有关的学习模型是本模型的特殊情形.其次对于单机排序问题我们提出一般解法.  相似文献   

17.
张新功 《运筹学学报》2013,17(1):98-105
研究具有加工时间之和学习效应下的一个新型成组排序问题,工件的学习效应是之前工件加工时间之和的函数,组学习效应是成组加工所在的位置的函数. 考虑最大完工时间和总完工时间两个问题,证明了这两个问题都是多项式时间可解的,并提出了相应的多项式时间算法.  相似文献   

18.
We consider parallel machine scheduling problems where the processing of the jobs on the machines involves two types of objectives. The first type is one of two classical objective functions in scheduling theory: either the total completion time or the makespan. The second type involves an actual cost associated with the processing of a specific job on a given machine; each job-machine combination may have a different cost. Two bi-criteria scheduling problems are considered: (1) minimize the maximum machine cost subject to the total completion time being at its minimum, and (2) minimize the total machine cost subject to the makespan being at its minimum. Since both problems are strongly NP-hard, we propose fast heuristics and establish their worst-case performance bounds.  相似文献   

19.
In many situations, the skills of workers continuously improve when repeating the same or similar tasks. This phenomenon is known as the “learning effect” in the literature. In most studies, the learning phenomenon is implemented by assuming the actual job processing time is a function of its scheduled position [D. Biskup, Single-machine scheduling with learning considerations, Eur. J. Oper. Res. 115 (1999) 173–178]. Recently, a new model is proposed where the actual job processing time depends on the sum of the processing times of jobs already processed [C. Koulamas, G.J. Kyparisis, Single-machine and two-machine flowshop scheduling with general learning functions, Eur. J. Oper. Res. 178 (2007) 402–407]. In this paper, we extend their models in which the actual job processing time not only depends on its scheduled position, but also depends on the sum of the processing times of jobs already processed. We then show that the single-machine makespan and the total completion time problems remain polynomially solvable under the proposed model. In addition, we show that the total weighted completion time has a polynomial optimal solution under certain agreeable solutions.  相似文献   

20.
In this paper, we consider parallel identical machines scheduling problems with a deteriorating maintenance activity. In this model, each machine has a deteriorating maintenance activity, that is, delaying the maintenance increases the time required to perform it. We need to make a decision on when to schedule the deteriorating maintenance activities and the sequence of jobs to minimize total completion time. We provide a polynomial time algorithm to solve the total completion time minimization problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号