首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 118 毫秒
1.
Let G be a graph,for any u∈V(G),let N(u) denote the neighborhood of u and d(u)=|N(u)| be the degree of u. For any U V(G) ,let N(U)=Uu,∈UN(u), and d(U)=|N(U)|.A graph G is called claw-free if it has no induced subgraph isomorphic to K1.3. One of the fundamental results concerning cycles in claw-free graphs is due to Tian Feng,et al. : Let G be a 2-connected claw-free graph of order n,and d(u) d(v) d(w)≥n-2 for every independent vertex set {u,v,w} of G, then G is Hamiltonian. It is proved that, for any three positive integers s ,t and w,such that if G is a (s t w-1)connected claw-free graph of order n,and d(S) d(T) d(W)>n-(s t w) for every three disjoint independent vertex sets S,T,W with |S |=s, |T|=t, |W|=w,and S∪T∪W is also independent ,then G is Hamiltonian. Other related results are obtained too.  相似文献   

2.
In 1989, Zhu, Li and Deng introduced the definition of implicit degree of a vertex v in a graph G, denoted by id(v). In this paper, we prove that if G is a 2-connected graph of order n such that id(u) + id(v) ≥ n for each pair of nonadjacent vertices u and v in G, then G is pancyclic unless G is bipartite, or else n = 4r, r ≥ 2 and G is isomorphic to F4r .  相似文献   

3.
Let G be a simple graph.An IE-total coloring f of G refers to a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color.Let C(u) be the set of colors of vertex u and edges incident to u under f.For an IE-total coloring f of G using k colors,if C(u)=C(v) for any two different vertices u and v of V(G),then f is called a k-vertex-distinguishing IE-total-coloring of G,or a k-VDIET coloring of G for short.The minimum number of colors required for a VDIET coloring of G is denoted by χ ie vt (G),and it is called the VDIET chromatic number of G.We will give VDIET chromatic numbers for complete bipartite graph K4,n (n≥4),K n,n (5≤ n ≤ 21) in this article.  相似文献   

4.
Let G be a simple graph.An IE-total coloring f of G refers to a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color.Let C(u) be the set of colors of vertex u and edges incident to u under f.For an IE-total coloring f of G using k colors,if C(u)=C(v) for any two different vertices u and v of V(G),then f is called a k-vertex-distinguishing IE-total-coloring of G,or a k-VDIET coloring of G for short.The minimum number of colors required for a VDIET coloring of G is denoted by χ ie vt (G),and it is called the VDIET chromatic number of G.We will give VDIET chromatic numbers for complete bipartite graph K4,n (n≥4),K n,n (5≤ n ≤ 21) in this article.  相似文献   

5.
A weighted graph is one in which every edge e is assigned a nonnegative number, called the weight of e. The sum of the weights of the edges incident with a vertex v is called the weighted degree of v, denoted by dw(v). The weight of a cycle is defined as the sum of the weights of its edges. Fujisawa proved that if G is a 2-connected triangle-free weighted graph such that the minimum weighted degree of G is at least d, then G contains a cycle of weight at least 2d. In this paper, we proved that if G is a2-connected triangle-free weighted graph of even size such that dw(u) + dw(v) ≥ 2d holds for any pair of nonadjacent vertices u, v ∈ V(G), then G contains a cycle of weight at least 2d.  相似文献   

6.
Let G be a simple graph of order at least 2.A VE-total-coloring using k colors of a graph G is a mapping f from V (G) E(G) into {1,2,···,k} such that no edge receives the same color as one of its endpoints.Let C(u)={f(u)} {f(uv) | uv ∈ E(G)} be the color-set of u.If C(u)=C(v) for any two vertices u and v of V (G),then f is called a k-vertex-distinguishing VE-total coloring of G or a k-VDVET coloring of G for short.The minimum number of colors required for a VDVET coloring of G is denoted by χ ve vt (G) and it is called the VDVET chromatic number of G.In this paper we get cycle C n,path P n and complete graph K n of their VDVET chromatic numbers and propose a related conjecture.  相似文献   

7.
An invariant σ2(G) of a graph is defined as follows: σ2(G) := min{d(u) + d(v)|u, v ∈V(G),uv ∈ E(G),u ≠ v} is the minimum degree sum of nonadjacent vertices (when G is a complete graph, we define σ2(G) = ∞). Let k, s be integers with k ≥ 2 and s ≥ 4, G be a graph of order n sufficiently large compared with s and k. We show that if σ2(G) ≥ n + k- 1, then for any set of k independent vertices v1,..., vk, G has k vertex-disjoint cycles C1,..., Ck such that |Ci| ≤ s and vi ∈ V(Ci) for all 1 ≤ i ≤ k.
The condition of degree sum σs(G) ≥ n + k - 1 is sharp.  相似文献   

8.
A set W of the vertices of a connected graph G is called a resolving set for G if for every two distinct vertices u, v ∈ V (G) there is a vertex w ∈ W such that d(u, w) ≠ d(v, w). A resolving set of minimum cardinality is called a metric basis for G and the number of vertices in a metric basis is called the metric dimension of G, denoted by dim(G). For a vertex u of G and a subset S of V (G), the distance between u and S is the number min s∈S d(u, s). A k-partition Π = {S 1 , S 2 , . . . , S k } of V (G) is called a resolving partition if for every two distinct vertices u, v ∈ V (G) there is a set S i in Π such that d(u, Si )≠ d(v, Si ). The minimum k for which there is a resolving k-partition of V (G) is called the partition dimension of G, denoted by pd(G). The circulant graph is a graph with vertex set Zn , an additive group of integers modulo n, and two vertices labeled i and j adjacent if and only if i-j (mod n) ∈ C , where CZn has the property that C =-C and 0 ■ C. The circulant graph is denoted by Xn, Δ where Δ = |C|. In this paper, we study the metric dimension of a family of circulant graphs Xn, 3 with connection set C = {1, n/2 , n-1} and prove that dim(Xn, 3 ) is independent of choice of n by showing that dim(Xn, 3 ) ={3 for all n ≡ 0 (mod 4), 4 for all n ≡ 2 (mod 4). We also study the partition dimension of a family of circulant graphs Xn,4 with connection set C = {±1, ±2} and prove that pd(Xn, 4 ) is independent of choice of n and show that pd(X5,4 ) = 5 and pd(Xn,4 ) ={3 for all odd n ≥ 9, 4 for all even n ≥ 6 and n = 7.  相似文献   

9.
Let simple graph G=(V, E),V=n,E=m. If there exists a path containing i vertices connecting u and v in V, then property P_i(u,v) will be said to told.For 2≤i≤n, let S_i be the set of all unordered pairs of distinct u and v for which property P_i(u.v) holds, and Let S_1 be the set of all unordered pairs of vertices which are not connected by any path. A graph G satisfies property P_i if |S_i|=n(n-1)/2.  相似文献   

10.
The Hamiltonian path graph H(G) of a graph G isa that graph having the samevertex set as G and in which two vertices u and v are adjacent if and only if Gcontains a Hamiltonian u - v path. A graph G is a self-Hamiltonian path graph ifG≌H(G).G. Chartrand conjecture: A graph G of order p is a self-Hamiltonian path:graph if and only if G is chord additive or G is isomorphic to one of the graphsK_p, (?)_p, C_p(p≥3),K((1/2)p, (1/2)p), and K_(p/2) (?)_(p/2),the last two for even P.  相似文献   

11.
1IntroductionInthispaper,Weuse[1]forterminologyandnotationnotdefinedhereandconsiderfinitesillWlegraphsonlyThedistancebetweenverticesuandvisdenotedbyd(u,v)-ForeachvertexuEV(G),wedeuotebyN(u)thesetofallverticesofGadjacenttou.ThesubgraphofGinducedbyN(u)U{u}isdenotedbyG(u).IfuveE(G),wedenotebyS(u,v)thenumberofedgesofmaximumstarincludingu5vasaninducedsubgraphinG.Letxai1dybetwoverticesinGwitl1d(x,y)=2,wedefineI(x,y)=IN(x)nN(y)I.LetCbeacycleofGwithafixedcyclicorientation.ForuEV(C),letu be…  相似文献   

12.
本文证明了:(1) 设G是2-连通简单图,且不含K_3,若对任意一对距离为2的点u,u,有max{d(u),d(u)}>n/3-1,其中n=|V(G)|,则G是上可嵌入的,且条件中不等式的界"n/3-1"是不可达的;(2) 设G是3-连通简单图,若对任意依次相邻的三点u,u,W,有max{d(u),d(u),d(w)}≥n/6+1,其中n=|V(G)|,则G是上可嵌入的,且条件中不等式的界"n/6+1"是最好的.  相似文献   

13.
余桂东  叶淼林 《应用数学》2008,21(1):162-166
本文我们证明如下结果:设G=(V,E)是一个n(n≥3)阶k-连通(k≥2)图,记X1,X2,…,Xk为V的子集,X=X1∪X2∪…∪Xk.若对每个I,I=1,2,…,k,满足:对任意的u,v∈Xi,有d(u) d(v)≥n或|N(u)∪N(v)|≥n-δ或|N(u)∩N(v)|≥α,这里δ是G的最小度,α是G的独立数,则G是X-可圈的.  相似文献   

14.
本文讨论了两顶点的度和与路可扩之间的关系,得到了如下结果:设G是n阶图,如果G中任意一对不相邻的顶点u,v满足d(u)+d(v)≥n+n/k(2≤k≤n-2),则G中任意一个满足k+1≤|P|相似文献   

15.
图G的Mostar指数定义为Mo(G)=∑uv∈Ε(G)|nu-nv|,其中nu表示在G中到顶点u的距离比到顶点v的距离近的顶点个数,nv表示到顶点v的距离比到顶点u的距离近的顶点个数.若一个图G的任两点之间的距离至多为2,且不是完全图,则称G是一个直径为2的图.已知直径为2点数至少为4的极大平面图的最小度为3或4.本文研究了直径为2且最小度为4的极大平面图的Mostar指数.具体说,若G是一个点数为n,直径为2,最小度为4的极大平面图,则(1)当n≤12时,Mostar指数被完全确定;(2)当n≥13时,4/3n2-44/3n+94/3≤Mo(G)≤2n2-16n+24,且达到上,下界的极图同时被找到.  相似文献   

16.
设G是一个图.G的顶点u和v的距离是u和v之间最短路的长度.Wiener指数是G中所有无序顶点对之间距离之和,而Hyper-Wiener指数定义为WW(G)=?∑u,v∈V(G)d(u,v)+?∑u,v∈V(G)d2(u,v),式中的和取遍G的所有顶点对.本文总结了图的Hyper-Wiener指数的最近结论.  相似文献   

17.
本文研究了图有分数因子的度条件,得到了下面的结果:令k(?)1是一个整数,G是一个连通的n阶图,n(?)4k-3且最小度δ(G)(?)k,若对于每一对不相邻的顶点u,v∈V(G)都有max{d_G(u),d_G(v)}(?)n/2,则G有分数k-因子.并指出该结果在一定意义上是最好可能的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号