首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let G and R each be a finite set of green and red points, respectively, such that |G|=n, |R|=nk, GR=, and the points of GR are not all collinear. Let t be the total number of lines determined by GR. The number of equichromatic lines (a subset of bichromatic) is at least (t+2n+3−k(k+1))/4. A slightly weaker lower bound exists for bichromatic lines determined by points in ℂ2. For sufficiently large point sets, a proof of a conjecture by Kleitman and Pinchasi is provided. A lower bound of (2t+14nk(3k+7))/14 is demonstrated for bichromatic lines passing through at most six points. Lower bounds are also established for equichromatic lines passing through at most four, five, or six points.  相似文献   

2.
A new sufficient condition for Hamiltonian graphs   总被引:1,自引:0,他引:1  
The study of Hamiltonian graphs began with Dirac’s classic result in 1952. This was followed by that of Ore in 1960. In 1984 Fan generalized both these results with the following result: If G is a 2-connected graph of order n and max{d(u),d(v)}≥n/2 for each pair of vertices u and v with distance d(u,v)=2, then G is Hamiltonian. In 1991 Faudree–Gould–Jacobson–Lesnick proved that if G is a 2-connected graph and |N(u)∪N(v)|+δ(G)≥n for each pair of nonadjacent vertices u,vV(G), then G is Hamiltonian. This paper generalizes the above results when G is 3-connected. We show that if G is a 3-connected graph of order n and max{|N(x)∪N(y)|+d(u),|N(w)∪N(z)|+d(v)}≥n for every choice of vertices x,y,u,w,z,v such that d(x,y)=d(y,u)=d(w,z)=d(z,v)=d(u,v)=2 and where x,y and u are three distinct vertices and w,z and v are also three distinct vertices (and possibly |{x,y}∩{w,z}| is 1 or 2), then G is Hamiltonian.  相似文献   

3.
We say that a graph G is quasi claw-free if every pair (a 1, a 2) of vertices at distance 2 satisfies {uN (a 1)∩N (a 2) | N[u]⊆N[a 1]∪N [a 2]}≠∅. A cycle C is m-dominating if every vertex of G is of distance at most m from C. We prove that if G is a κ-connected (κ≥2) quasi claw-free graph then either G has an m-dominating cycle or G has a set of at least κ+1 vertices such that the distance between every pair of them is at least 2m+3. Received: June 12, 1996 Revised: November 9, 1998  相似文献   

4.
Let G be a simple graph with n vertices. For any v ? V(G){v \in V(G)} , let N(v)={u ? V(G): uv ? E(G)}{N(v)=\{u \in V(G): uv \in E(G)\}} , NC(G) = min{|N(u) èN(v)|: u, v ? V(G){NC(G)= \min \{|N(u) \cup N(v)|: u, v \in V(G)} and uv \not ? E(G)}{uv \not \in E(G)\}} , and NC2(G) = min{|N(u) èN(v)|: u, v ? V(G){NC_2(G)= \min\{|N(u) \cup N(v)|: u, v \in V(G)} and u and v has distance 2 in E(G)}. Let l ≥ 1 be an integer. A graph G on nl vertices is [l, n]-pan-connected if for any u, v ? V(G){u, v \in V(G)} , and any integer m with lmn, G has a (u, v)-path of length m. In 1998, Wei and Zhu (Graphs Combinatorics 14:263–274, 1998) proved that for a three-connected graph on n ≥ 7 vertices, if NC(G) ≥ n − δ(G) + 1, then G is [6, n]-pan-connected. They conjectured that such graphs should be [5, n]-pan-connected. In this paper, we prove that for a three-connected graph on n ≥ 7 vertices, if NC 2(G) ≥ n − δ(G) + 1, then G is [5, n]-pan-connected. Consequently, the conjecture of Wei and Zhu is proved as NC 2(G) ≥ NC(G). Furthermore, we show that the lower bound is best possible and characterize all 2-connected graphs with NC 2(G) ≥ n − δ(G) + 1 which are not [4, n]-pan-connected.  相似文献   

5.
 Some known results on claw-free graphs are generalized to the larger class of almost claw-free graphs. In this paper, we prove the following two results and conjecture that every 5-connected almost claw-free graph is hamiltonian. (1). Every 2-connected almost claw-free graph GJ on n≤ 4 δ vertices is hamiltonian, where J is the set of all graphs defined as follows: any graph G in J can be decomposed into three disjoint connected subgraphs G 1, G 2 and G 3 such that E G (G i , G j ) = {u i , u j , v i v j } for ij and i,j = 1, 2, 3 (where u i v i V(G i ) for i = 1, 2, 3). Moreover the bound 4δ is best possible, thereby fully generalizing several previous results. (2). Every 3-connected almost claw-free graph on at most 5δ−5 vertices is hamiltonian, hereby fully generalizing the corresponding result on claw-free graphs. Received: September 21, 1998 Final version received: August 18, 1999  相似文献   

6.
 Let a, b, m, and t be integers such that 1≤a<b and 1≤t≤⌉(bm+1)/a⌉. Suppose that G is a graph of order |G| and H is any subgraph of G with the size |E(H)|=m. Then we prove that G has an [a,b]-factor containing all the edges of H if the minimum degree is at least a, |G|>((a+b)(t(a+b−1)−1)+2m)/b, and |N G (x 1)∪⋯ ∪N G (x t )|≥(a|G|+2m)/(a+b) for every independent set {x 1,…,x t }⊆V(G). This result is best possible in some sense and it is an extension of the result of H. Matsuda (A neighborhood condition for graphs to have [a,b]-factors, Discrete Mathematics 224 (2000) 289–292). Received: October, 2001 Final version received: September 17, 2002 RID="*" ID="*" This research was partially supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Encouragement of Young Scientists, 13740084, 2001  相似文献   

7.
A tree is called a k-tree if the maximum degree is at most k. We prove the following theorem, by which a closure concept for spanning k-trees of n-connected graphs can be defined. Let k ≥ 2 and n ≥ 1 be integers, and let u and v be a pair of nonadjacent vertices of an n-connected graph G such that deg G (u) + deg G (v) ≥ |G| − 1 − (k − 2)n, where |G| denotes the order of G. Then G has a spanning k-tree if and only if G + uv has a spanning k-tree.  相似文献   

8.
Dissipativity of Runge-Kutta methods in Hilbert spaces   总被引:10,自引:0,他引:10  
This paper concerns the discretization by Runge-Kutta methods of the initial value problemu t =f(u), under the dissipative structural condition that there exist α≥0, β>0, such thatf:W→H, ℜe, ∀wW, for complex Hilbert spacesW⊆H. It is shown that strong A-stability is necessary to ensure the dissipativity of the method, whilst algebraic stability plus |R(∞)|<1 is a sufficient condition in the case of DJ-irreducible methods.  相似文献   

9.
 Let G be a 2-connected graph with maximum degree Δ (G)≥d, and let x and y be distinct vertices of G. Let W be a subset of V(G)−{x, y} with cardinality at most d−1. Suppose that max{d G(u), d G(v)}≥d for every pair of vertices u and v in V(G)−({x, y}∪W) with d G(u,v)=2. Then x and y are connected by a path of length at least d−|W|. Received: February 5, 1998 Revised: April 13, 1998  相似文献   

10.
. In this work we consider finite undirected simple graphs. If G=(V,E) is a graph we denote by α(G) the stability number of G. For any vertex x let N[x] be the union of x and the neighborhood N(x). For each pair of vertices ab of G we associate the set J(a,b) as follows. J(a,b)={uN[a]∩N[b]∣N(u)⊆N[a]∪N[b]}. Given a graph G, its partially squareG * is the graph obtained by adding an edge uv for each pair u,v of vertices of G at distance 2 whenever J(u,v) is not empty. In the case G is a claw-free graph, G * is equal to G 2. If G is k-connected, we cover the vertices of G by at most ⌈α(G *)/k⌉ cycles, where α(G *) is the stability number of the partially square graph of G. On the other hand we consider in G * conditions on the sum of the degrees. Let G be any 2-connected graph and t be any integer (t≥2). If ∑ x S deg G (x)≥|G|, for every t-stable set SV(G) of G * then the vertex set of G can be covered with t−1 cycles. Different corollaries on covering by paths are given. Received: January 22, 1997 Final version received: February 15, 2000  相似文献   

11.
Abstract. A simple graph G is induced matching extendable,shortly IM-extendable,if every in-duced matching of G is included in a perfect matching of G. The degree conditions of IM-extend-able graphs are researched in this paper. The main results are as follows:  相似文献   

12.
It is proved that if Ω ⊂ Rn {R^n}  is a bounded Lipschitz domain, then the inequality || u ||1 \leqslant c(n)\textdiam( W)òW | eD(u) | {\left\| u \right\|_1} \leqslant c(n){\text{diam}}\left( \Omega \right)\int\limits_\Omega {\left| {{\varepsilon^D}(u)} \right|} is valid for functions of bounded deformation vanishing on ∂Ω. Here eD(u) {\varepsilon^D}(u) denotes the deviatoric part of the symmetric gradient and òW | eD(u) | \int\limits_\Omega {\left| {{\varepsilon^D}(u)} \right|} stands for the total variation of the tensor-valued measure eD(u) {\varepsilon^D}(u) . Further results concern possible extensions of this Poincaré-type inequality. Bibliography: 27 titles.  相似文献   

13.
Let Ω, ⊂R n and n ≥ 4 be even. We show that if a sequence {uj} in W1,n/2(Ω;R n) is almost conformal in the sense that dist (∇uj,R +SO(n)) converges strongly to 0 in Ln/2 and if uj converges weakly to u in W1,n/2, then u is conformal and ∇uj → ∇u strongly in L loc q for all 1 < -q < n/2. It is known that this conclusion fails if n/2 is replaced by any smaller exponent p. We also prove the existence of a quasiconvex function f(A) that satisfies 0 ≤ f(A) ≤ C (1 + |A|n/2) and vanishes exactly onR + SO(n). The proof of these results involves the Iwaniec-Martin characterization of conformal maps, the weak continuity and biting convergence of Jacobians, and the weak-L1 estimates for Hodge decompositions.  相似文献   

14.
§1 IntroductionLet G be a graph with vertex-set V(G) ={ v1 ,v2 ,...,vn} .A labeling of G is a bijectionL:V(G)→{ 1,2 ,...,n} ,where L (vi) is the label of a vertex vi.A labeled graph is anordered pair (G,L) consisting of a graph G and its labeling L.Definition1.An increasing nonconsecutive path in a labeled graph(G,L) is a path(u1 ,u2 ,...,uk) in G such thatL(ui) + 1相似文献   

15.
Closed Separator Sets   总被引:1,自引:0,他引:1  
A smallest separator in a finite, simple, undirected graph G is a set SV (G) such that GS is disconnected and |S|=κ(G), where κ(G) denotes the connectivity of G. A set S of smallest separators in G is defined to be closed if for every pair S,TS, every component C of GS, and every component S of GT intersecting C either X(C,D) := (V (C) ∩ T) ∪ (TS) ∪ (SV (D)) is in S or |X(C,D)| > κ(G). This leads, canonically, to a closure system on the (closed) set of all smallest separators of G. A graph H with is defined to be S-augmenting if no member of S is a smallest separator in GH:=(V (G) ∪ V (H), E(G) ∪ E(H)). It is proved that if S is closed then every minimally S-augmenting graph is a forest, which generalizes a result of Jordán. Several applications are included, among them a generalization of a Theorem of Mader on disjoint fragments in critically k-connected graphs, a Theorem of Su on highly critically k-connected graphs, and an affirmative answer to a conjecture of Su on disjoint fragments in contraction critically k-connected graphs of maximal minimum degree.  相似文献   

16.
Some known results on claw-free graphs are generalized to the larger class of almost claw-free graphs. In this paper, we prove several properties on longest cycles in almost claw-free graphs. In particular, we show the following two results.? (1) Every 2-connected almost claw-free graph on n vertices contains a cycle of length at least min {n, 2δ+4} and the bound 2δ+ 4 is best possible, thereby fully generalizing a result of Matthews and Sumner.? (2) Every 3-connected almost claw-free graph on n vertices contains a cycle of length at least min {n, 4δ}, thereby fully generalizing a result of MingChu Li. Received: September 17, 1996 Revised: September 22, 1998  相似文献   

17.
Let G be a simple graph with n vertices. For any , let , and , and and u and v has distance 2 in E(G)}. Let l ≥ 1 be an integer. A graph G on nl vertices is [l, n]-pan-connected if for any , and any integer m with lmn, G has a (u, v)-path of length m. In 1998, Wei and Zhu (Graphs Combinatorics 14:263–274, 1998) proved that for a three-connected graph on n ≥ 7 vertices, if NC(G) ≥ n − δ(G) + 1, then G is [6, n]-pan-connected. They conjectured that such graphs should be [5, n]-pan-connected. In this paper, we prove that for a three-connected graph on n ≥ 7 vertices, if NC 2(G) ≥ n − δ(G) + 1, then G is [5, n]-pan-connected. Consequently, the conjecture of Wei and Zhu is proved as NC 2(G) ≥ NC(G). Furthermore, we show that the lower bound is best possible and characterize all 2-connected graphs with NC 2(G) ≥ n − δ(G) + 1 which are not [4, n]-pan-connected.   相似文献   

18.
19.
In 1990 G. T. Chen proved that if G is a 2-connected graph of order n and 2|N(x) ∪ N(y)| + d(x) + d(y) ≥ 2n − 1 for each pair of nonadjacent vertices x, yV (G), then G is Hamiltonian. In this paper we prove that if G is a 2-connected graph of order n and 2|N(x) ∪ N(y)| + d(x)+d(y) ≥ 2n−1 for each pair of nonadjacent vertices x, yV (G) such that d(x, y) = 2, then G is Hamiltonian.  相似文献   

20.
We investigate the behaviour of solution uu(x, t; λ) at λ =  λ* for the non-local porous medium equation ${u_t = (u^n)_{xx} + {\lambda}f(u)/({\int_{-1}^1} f(u){\rm d}x)^2}We investigate the behaviour of solution uu(x, t; λ) at λ =  λ* for the non-local porous medium equation ut = (un)xx + lf(u)/(ò-11 f(u)dx)2{u_t = (u^n)_{xx} + {\lambda}f(u)/({\int_{-1}^1} f(u){\rm d}x)^2} with Dirichlet boundary conditions and positive initial data. The function f satisfies: f(s),−f ′ (s) > 0 for s ≥ 0 and s n-1 f(s) is integrable at infinity. Due to the conditions on f, there exists a critical value of parameter λ, say λ*, such that for λ > λ* the solution u = u(x, t; λ) blows up globally in finite time, while for λ ≥ λ* the corresponding steady-state problem does not have any solution. For 0 < λ < λ* there exists a unique steady-state solution w = w(x; λ) while u = u(x, t; λ) is global in time and converges to w as t → ∞. Here we show the global grow-up of critical solution u* =  u(x, t; λ*) (u* (x, t) → ∞, as t → ∞ for all x ? (-1,1){x\in(-1,1)}.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号