首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
An acyclic graphoidal cover of a graph G is a collection ψ of paths in G such that every path in ψ has at least two vertices, every vertex of G is an internal vertex of at most one path in ψ and every edge of G is in exactly one path in ψ. The minimum cardinality of an acyclic graphoidal cover of G is called the acyclic graphoidal covering number of G and is denoted by ηa. In this paper we characterize the class of graphs G for which ηa=Δ−1 where Δ is the maximum degree of a vertex in G.  相似文献   

2.
An acyclic graphoidal cover of a graph G is a collection ψ of paths in G such that every path in ψ has at least two vertices, every vertex of G is an internal vertex of at most one path in ψ and every edge of G is in exactly one path in ψ. The minimum cardinality of an acyclic graphoidal cover of G is called the acyclic graphoidal covering number of G and is denoted by ηa. A path partition of a graph G is a collection P of paths in G such that every edge of G is in exactly one path in P. The minimum cardinality of a path partition of G is called the path partition number of G and is denoted by π. In this paper we determine ηa and π for several classes of graphs and obtain a characterization of all graphs with Δ 4 and ηa = Δ − 1. We also obtain a characterization of all graphs for which ηa = π.  相似文献   

3.
Least domination in a graph   总被引:2,自引:0,他引:2  
The least domination number γL of a graph G is the minimum cardinality of a dominating set of G whose domination number is minimum. The least point covering number L of G is the minimum cardinality of a total point cover (point cover including every isolated vertex of G) whose total point covering number is minimum. We prove a conjecture of Sampathkumar saying that in every connected graph of order n 2. We disprove another one saying that γL L in every graph but instead of it, we establish the best possible inequality . Finally, in relation with the minimum cardinality γt of a dominating set without isolated vertices (total dominating set), we prove that the ratio γLt can be in general arbitrarily large, but remains bounded by if we restrict ourselves to the class of trees.  相似文献   

4.
Subgraph distances in graphs defined by edge transfers   总被引:1,自引:0,他引:1  
For two edge-induced subgraphs F and H of the same size in a graph G, the subgraph H can be obtained from F by an edge jump if there exist four distinct vertices u, v, w, and x in G such that uv ε E(F), wx ε E(G) - E(F), and H = F - uv + wx. The subgraph F is j-transformed into H if H can be obtained from F by a sequence of edge jumps. Necessary and sufficient conditions are presented for a graph G to have the property that every edge-induced subgraph of a fixed size in G can be j-transformed into every other edge-induced subgraph of that size. The minimum number of edge jumps required to transform one subgraph into another is called the jump distance. This distance is a metric and can be modeled by a graph. The jump graph J(G) of a graph G is defined as that graph whose vertices are the edges of G and where two vertices of J(G) are adjacent if and only if the corresponding edges of G are independent. For a given graph G, we consider the sequence {{Jk(G)}} of iterated jump graphs and classify each graph as having a convergent, divergent, or terminating sequence.  相似文献   

5.
A graph is singular of nullity η if zero is an eigenvalue of its adjacency matrix with multiplicity η. If η(G)=1, then the core of G is the subgraph induced by the vertices associated with the non-zero entries of the zero-eigenvector. A connected subgraph of G with the least number of vertices and edges, that has nullity one and the same core as G, is called a minimal configuration. A subdivision of a graph G is obtained by inserting a vertex on every edge of G. We review various properties of minimal configurations. In particular, we show that a minimal configuration is a tree if and only if it is a subdivision of some other tree.  相似文献   

6.
Bipartite dimensions and bipartite degrees of graphs   总被引:2,自引:0,他引:2  
A cover (bipartite) of a graph G is a family of complete bipartite subgraphs of G whose edges cover G's edges. G'sbipartite dimension d(G) is the minimum cardinality of a cover, and its bipartite degree η(G) is the minimum over all covers of the maximum number of covering members incident to a vertex. We prove that d(G) equals the Boolean interval dimension of the irreflexive complement of G, identify the 21 minimal forbidden induced subgraphs for d 2, and investigate the forbidden graphs for d n that have the fewest vertices. We note that for complete graphs, d(Kn) = [log2n], η(Kn) = d(Kn) for n 16, and η(Kn) is unbounded. The list of minimal forbidden induced subgraphs for η 2 is infinite. We identify two infinite families in this list along with all members that have fewer than seven vertices.  相似文献   

7.
A dominating set for a graph G = (V, E) is a subset of vertices VV such that for all v ε VV′ there exists some u ε V′ for which {v, u} ε E. The domination number of G is the size of its smallest dominating set(s). For a given graph G with minimum size dominating set D, let m1 (G, D) denote the number of edges that have neither endpoint in D, and let m2 (G, D) denote the number of edges that have at least one endpoint in D. We characterize the possible values that the pair (m1 (G, D), m2 (G, D)) can attain for connected graphs having a given domination number.  相似文献   

8.
Let G be an infinite locally finite connected graph. We study the reconstructibility of G in relation to the structure of its end set . We prove that an infinite locally finite connected graph G is reconstructible if there exists a finite family i)0i (n2) of pairwise finitely separable subsets of such that, for all x,y,x′,yV(G) and every isomorphism f of G−{x,y} onto G−{x′,y′} there is a permutation π of {0,…,n−1} such that for 0i<n. From this theorem we deduce, as particular consequences, that G is reconstructible if it satisfies one of the following properties: (i) G contains no end-respecting subdivision of the dyadic tree and has at least two ends of maximal order; (ii) the set of thick ends or the one of thin ends of G is finite and of cardinality greater than one. We also prove that if almost all vertices of G are cutvertices, then G is reconstructible if it contains a free end or if it has at least a vertex which is not a cutvertex.  相似文献   

9.
A graph G with n vertices is said to be embeddable (in its complement) if there is an automorphism φ of Kn such that E(G) ∩ E(φ(G))=. It is known that all trees T with n (≥2) vertices and T K1,n−1 are embeddable. We say that G is 1-embeddable if, for every edge e, there is an automorphism φ of Kn such that E(G) ∩ E(φ(G))={e};and that it is 2-embeddable if,for every pair e1, e2 of edges, there is an automorphism φ of Kn such that E(G) ∩ E(φ(G))={e1, e2}. We prove here that all trees with n (3) vertices are 1-embeddable; and that all trees T with n (4) vertices and T K1,n−1 are 2-embeddable. In a certain sense, this result is sharp.  相似文献   

10.
An edge uv of a graph G is called a wing if there exists a chordless path with vertices u, v, x, y and edges uv, vx, xy. The wing-graph W(G) of a graph G is a graph having the same vertex set as G; uv is an edge in W(G) if and only if uv is a wing in G. A graph G is saturated if G is isomorphic to W(G). A star-cutset in a graph G is a non-empty set of vertices such that GC is disconnected and some vertex in C is adjacent to all the remaining vertices in C. V. Chvátal proposed to call a graph unbreakable if neither G nor its complement contain a star-cutset. We establish several properties of unbreakable graphs using the notions of wings and saturation. In particular, we obtain seven equivalent versions of the Strong Perfect Graph Conjecture.  相似文献   

11.
Block graphs with unique minimum dominating sets   总被引:1,自引:0,他引:1  
For any graph G a set D of vertices of G is a dominating set, if every vertex vV(G)−D has at least one neighbor in D. The domination number γ(G) is the smallest number of vertices in any dominating set. In this paper, a characterization is given for block graphs having a unique minimum dominating set. With this result, we generalize a theorem of Gunther, Hartnell, Markus and Rall for trees.  相似文献   

12.
A graph G is packable by the graph F if its edges can be partitioned into copies of F. If deleting the edges of any F-packable subgraph from G leaves an F-packable graph, then G is randomly F-packable. If G is F-packable but not randomly F-packable then G is F-forbidden. The minimal F-forbidden graphs provide a characterization of randomly F-packable graphs. We show that for each ρ-connected ρ-regular graph F with ρ > 1, there is a set (F) of minimal F-forbidden graphs of a simple form, such that any other minimal F-forbidden graph can be obtained from a graph in (F) by a process of identifying vertices and removing copies of F. When F is a connected strongly edge-transitive graph having more than one edge (such as a cycle or hypercube), there is only one graph in (F).  相似文献   

13.
For any positive integer n and any graph G a set D of vertices of G is a distance-n dominating set, if every vertex vV(G)−D has exactly distance n to at least one vertex in D. The distance-n domination number γ=n(G) is the smallest number of vertices in any distance-n dominating set. If G is a graph of order p and each vertex in G has distance n to at least one vertex in G, then the distance-n domination number has the upper bound p/2 as Ore's upper bound on the classical domination number. In this paper, a characterization is given for graphs having distance-n domination number equal to half their order, when the diameter is greater or equal 2n−1. With this result we confirm a conjecture of Boland, Haynes, and Lawson.  相似文献   

14.
Every graph can be represented as the intersection graph on a family of closed unit cubes in Euclidean space En. Cube vertices have integer coordinates. The coordinate matrix, A(G)={vnk} of a graph G is defined by the set of cube coordinates. The imbedded dimension of a graph, Bp(G), is a number of columns in matrix A(G) such that each of them has at least two distinct elements vnkvpk. We show that Bp(G)=cub(G) for some graphs, and Bp(G)n−2 for any graph G on n vertices. The coordinate matrix uses to obtain the graph U of radius 1 with 3n−2 vertices that contains as an induced subgraph a copy of any graph on n vertices.  相似文献   

15.
We present an optimal Θ(n)-time algorithm for the selection of a subset of the vertices of an n-vertex plane graph G so that each of the faces of G is covered by (i.e., incident with) one or more of the selected vertices. At most n/2 vertices are selected, matching the worst-case requirement. Analogous results for edge-covers are developed for two different notions of “coverage”. In particular, our linear-time algorithm selects at most n−2 edges to strongly cover G, at most n/3 diagonals to cover G, and in the case where G has no quadrilateral faces, at most n/3 edges to cover G. All these bounds are optimal in the worst-case. Most of our results flow from the study of a relaxation of the familiar notion of a 2-coloring of a plane graph which we call a face-respecting 2-coloring that permits monochromatic edges as long as there are no monochromatic faces. Our algorithms apply directly to the location of guards, utilities or illumination sources on the vertices or edges of polyhedral terrains, polyhedral surfaces, or planar subdivisions.  相似文献   

16.
Let G=(V,E,ω) be an incomplete graph with node set V, edge set E, and nonnegative weights ωij's on the edges. Let each edge (vi,vj) be viewed as a rigid bar, of length ωij, which can rotate freely around its end nodes. A realization of a graph G is an assignment of coordinates, in some Euclidean space, to each node of G. In this paper, we consider the problem of determining whether or not a given realization of a graph G is rigid. We show that each realization of G can be epresented as a point in a compact convex set ; and that a generic realization of G is rigid if and only if its corresponding point is a vertex of Ω, i.e., an extreme point with full-dimensional normal cone.  相似文献   

17.
Dong  Wei  Li  Rui  Xu  Bao Gang 《数学学报(英文版)》2019,35(4):577-582
A strong edge coloring of a graph is a proper edge coloring where the edges at distance at most 2 receive distinct colors. The strong chromatic index χ'_s(G) of a graph G is the minimum number of colors used in a strong edge coloring of G. In an ordering Q of the vertices of G, the back degree of a vertex x of G in Q is the number of vertices adjacent to x, each of which has smaller index than x in Q. Let G be a graph of maximum degree Δ and maximum average degree at most 2 k. Yang and Zhu [J. Graph Theory, 83, 334–339(2016)] presented an algorithm that produces an ordering of the edges of G in which each edge has back degree at most 4 kΔ-2 k in the square of the line graph of G, implying that χ'_s(G) ≤ 4 kΔ-2 k + 1. In this note, we improve the algorithm of Yang and Zhu by introducing a new procedure dealing with local structures. Our algorithm generates an ordering of the edges of G in which each edge has back degree at most(4 k-1)Δ-2 k in the square of the line graph of G, implying that χ'_s(G) ≤(4 k-1)Δ-2 k + 1.  相似文献   

18.
Eigenvalues of the Laplacian of a graph   总被引:24,自引:0,他引:24  
Let G be a finite undirected graph with no loops or multiple edges. We define the Laplacian matrix of G,Δ(G)by Δij= degree of vertex i and Δij-1 if there is an edge between vertex i and vertex j. In this paper we relate the structure of the graph G to the eigenvalues of A(G): in particular we prove that all the eigenvalues of Δ(G) are non-negative, less than or equal to the number of vertices, and less than or equal to twice the maximum vertex degree. Precise conditions for equality are given.  相似文献   

19.
In a simple digraph, a star of degree t is a union of t edges with a common tail. The k-domination number γk(G) of digraph G is the minimum number of stars of degree at most k needed to cover the vertex set. We prove that γk(T)=n/(k+1) when T is a tournament with n14k lg k vertices. This improves a result of Chen, Lu and West. We also give a short direct proof of the result of E. Szekeres and G. Szekeres that every n-vertex tournament is dominated by at most lg n−lglg n+2 vertices.  相似文献   

20.
Remarks on the bondage number of planar graphs   总被引:4,自引:0,他引:4  
The bondage number b(G) of a nonempty graph G is the cardinality of a smallest set of edges whose removal from G results in a graph with domination number greater than the domination number γ(G) of G. In 1998, J.E. Dunbar, T.W. Haynes, U. Teschner, and L. Volkmann posed the conjecture b(G)Δ(G)+1 for every nontrivial connected planar graph G. Two years later, L. Kang and J. Yuan proved b(G)8 for every connected planar graph G, and therefore, they confirmed the conjecture for Δ(G)7. In this paper we show that this conjecture is valid for all connected planar graphs of girth g(G)4 and maximum degree Δ(G)5 as well as for all not 3-regular graphs of girth g(G)5. Some further related results and open problems are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号