首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
王峰 《中学数学》2006,(4):47-48
整数剩余类就是把全体整数去被m(m∈N )除,然后按余数(0,1,2,…,m-1)将整数分为m类,且每个整数属于且仅属于其中的一类.例如,当m=2时,整数分为两类:余数为0称偶数,余数为1称奇数;当m=3时,整数分为三类,可记为{3k},{3k 1},{3k 2}(k∈Z)等.整数剩余类在高中数学中应用较为广泛,利  相似文献   

2.
整数被自然数m除按余数可以分为m类:{mk},{mk 1},{mk 2},…{mk m-1}。运用整数的这种分类——剩余类及运算性质是解答某些数学智趣题(包括某些整数论定理及数学竞赛题)的卓有成效的方法。例如,当m=2时,便有功劳显赫的奇偶分析法,众多的书刊对此也作过较多的介绍。本文介绍:当m=3时,整数被分为{3k},{3k 1},  相似文献   

3.
The present paper is concerned with the nonlinear elliptic system of second order. Firstly, we shall establish a complex form of the system. Secondly .we shall consider the solvability of some boundary value problems for tbe complex equation of second order. let (1) \[{\Phi _j}(x,y,U,V,{U_x},{U_y},...,{U_{xx}},{U_{yy}},{V_{xx}},{V_{xy}},{V_{yy}}) = 0,j = 1,2\] be the I. G. Petrowkii’s nonlinear elliptic system of second Qrder in the botinded domain G, where \[{\Phi _j}(x,y,{z_1},...,{z_{12}})(j = 1,2)\]) are continuous real functions of the variables \[x,y[(x,y) \in G],{z_1},...,{z_{12}} \in R\], (the real axis), and contiriupusly differentiable for \[{z_1},...,{z_{12}} \in R\]. The solutions \[[U(x,y),V(x,y)]\], F(a?, y)] of the system are understood in the generalized sense. THEOBEM I. i) If the I. G. Petrovskii;s nonlinear system of equations (1) satisfies the M. I. visik-D. Xiagi’s uniformly elliptic condition for any solutions U(x,y),V(x,y) of (1) in G, then it can be written as the following complex equation? (2)\[{W_{z\overline z }} = F(z,W,{W_z},\overline {{W_z}} ,{W_{zz}},{\overline W _{zz}})\] where W=U+iV, z=x+iy, \[{W_z} = \frac{1}{2}[{W_x} - i{W_y}],...,\], ii) If the I. G. Petrovskii's nonlinear elliptic system (1) satisfies the condition that there exist two positive constants \[\delta \] and K, such that (3) \[|{\Phi _{j{U_{xx}}}}|,|{\Phi _{j{U_{xy}}}}|,|{\Phi _{j{U_{yy}}}}|,|{\Phi _{j{V_{xx}}}}|,|{\Phi _{j{V_{xy}}}}|,|{\Phi _{j{V_{yy}}}}| \leqslant K,j = 1,2\] \[|det(A)| \geqslant \delta > 0\], in G, then by a suitable linear trans-formation of the variables (x,y)into variables \[(\xi ,\eta )\], system (1) can be written as the following coinplex equation ⑷ \[{W_{\xi \xi }} = F(\xi ,W,{W_\xi },{\overline W _\xi },{W_{\xi \xi }},{\overline W _{\xi \xi }}),\varsigma = \xi + i\eta \] In the following section, we discuss the complex equation (2) of the following form: ,We^B(z9 Wee)x .\[(5)\left\{ \begin{gathered} {W_{zz}} = F(z,W,{W_z},{\overline W _z},{W_{zz}},{\overline W _{zz}}) \hfill \ F = {Q_1}{W_{zz}} + {Q_2}\overline {{W_{\overline z \overline z }}} + {Q_4}{W_{zz}} + {A_1}{W_z} + {A_2}{\overline W _{\overline z }} \hfill \ + {A_3}\overline {{W_z}} + {A_4}{W_{\bar z}} + {A_5}W + {A_6}\bar W + {A_7}, \hfill \ {Q_j} = {Q_j}(z,W,{W_{\bar z}},{\overline W _{\bar z}},{W_{zz}},{\overline W _{zz}}),j = 1,...,4 \hfill \ {A_j} = {A_j}(z,W,{W_z},{\overline W _z}),j = 1,...,7 \hfill \\ \end{gathered} \right.\] 1) \[{Q_j}(z,W,{W_z},{\overline W _z},U,V),j = 1,...,4.{A_j} = (z,W,{W_z},{\overline W _z}),j = 1,...,7\] are measurable functions of z for any continuously differentiable functions W(z) and measurable functions U(z), V(z) in G, Furthermore they satisfy (6)\[{\left\| {{A_j}} \right\|_{{L_p}(\overline {G)} }} \leqslant {K_0},j = 1,2,{\left\| {{A_j}} \right\|_{{L_p}(\overline {G)} }} \leqslant {K_1},j = 3,...,7\] where\[{K_0},{K_1}( \leqslant {K_0}),p( > 2)\] are constants: 2) Qj, Aj are continuous for \[W,{W_z},{\overline W _z} \in E\](the whole plane) and the continuity is uniform with respect to almost every point \[z \in G\] and \[U,V \in E\] 3) \[F(z,W,{W_z},{\overline W _z},U,V)\] satisfies the following Lipschitz's condition, i.e. for almost every point \[z \in G\], and for all \[W,{W_z},{\overline W _z}{U_1},{U_2},{V_1},{V_2} \in E\], the inequality (7)\[\begin{gathered} |F(z,W,{W_z},{\overline W _z},{U_1},{V_1}) - F(z,W,{W_z},{\overline W _z},{U_2},{V_2})| \hfill \ \leqslant {q_0}|{U_1} - {U_2}| + q_0^'|{V_1} - {V_2}|,{q_0} + q_0^' < 1 \hfill \\ \end{gathered} \] holds where \[{q_0},q_0^'\] are two nonnegative constants. In this paper, let G be a simply connected domain with boundary \[\Gamma \in C_\mu ^2(0 < \mu < 1)\]; without loss of geaerality, we may assume that G is the unit disk |z|<1. Now we, describe the results of the solvability of Riemann-Hilbert botindary value problem (Problem R-H) and the oblique derivative problem (Problem P) for Eq. (5) in the unit disk G: |z| <1. Problem R-H. We try to find a solution W(z)of Eq. (5) which is continuonsly differentiable on \[G\], and satisfies the boundary conditions: (8) \[\operatorname{Re} [{{\bar z}^{{\chi _1}}},{W_z}] = {r_1}(z),Re[{{\bar z}^{{\chi _2}}}\overline {W(z)} ] = {r_2}(z),z \in \Gamma \]? where \[{\chi _1},{\chi _2}\] are two integers, and \[{r_j} \in C_v^{j - 1}(\Gamma ),j = 1,2,\frac{1}{2} < v < 1\] Problem P. we try to find a solution W(z) of Eq. (5) which is continuously diffierentiabfe on \[\overline G \] and satisfies the boundaory conditions: (9) \[\operatorname{Re} [{{\bar z}^{{\chi _1}}}{W_z}] = {r_1}(z),Re[{{\bar z}^{{\chi _2}}}\overline {W(z)} ] = {r_2}(z),z \in \Gamma \], Where \[{\chi _1},{\chi _2},{r_1}(z),{r_2}(z)\] are the same as in (8), but \[{r_2}(z) \in {C_v}(\Gamma )\]. Theorem II. Suppose that Eq. (5) satisfies the condition C and the constants \[q_0^'\] and K1 are adequately small; then the solvability of Problem R-H is as follows: 1) When \[{\chi _1} \geqslant 0,{\chi _2} \geqslant 0\] Problem R-H is solvable; 2) When \[{\chi _1} < 0,{\chi _2} \geqslant 0(or{\kern 1pt} {\kern 1pt} {\chi _1} \geqslant 0,{\chi _2} < 0){\kern 1pt} \] there are \[2|{\chi _1}| - 1(or2|{\chi _2}| - 1)\] solvable conditions for Problem R-H; 3) WHen \[{\chi _1} < 0,{\chi _2} < 0\], there are \[2(|{\chi _1}| + |{\chi _2}| - 1)\] solvable conditions for Problem R-H. Theorem III Let Eq (5) satisf the condition C and the constants \[q_0^'\] and \[{K_1}\] are adequately small, then tbe solvability of Problem P is as follows: 1) When \[{\chi _1} \geqslant 0,{\chi _2} \geqslant 0\] Problem P is solvable; 2) When \[{\chi _1} < 0,{\chi _2} \geqslant 0(or{\kern 1pt} {\kern 1pt} {\chi _1} \geqslant 0,{\chi _2} < 0){\kern 1pt} {\kern 1pt} {\kern 1pt} \], there are \[2|{\chi _1}| - 1(or2|{\chi _2}| - 1)\] solvable conditions for Problem P; 3) When \[{\chi _1} < 0,{\chi _2} < 0\]; there are \[2|{\chi _1}|{\text{ + }}|{\chi _2}| - 1)\] solvable conditions for Problem P. Furthermore, the solution W(z) of Problem P for Eq. (5) may be expressed as \[{g_j}(\xi ,z) = \left\{ \begin{gathered} \int_0^z {\frac{{{z^{2{\chi _j} + 1}}}}{{1 - \bar \xi z}}dz,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} for{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\chi _j} \geqslant 0} \hfill \ \int_0^z {\frac{{{\xi ^{ - 2{\chi _j} - 1}}}}{{1 - \bar \xi z}}dz,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} for{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\chi _j} < 0} \hfill \\ \end{gathered} \right.j = 1,2\] where \[{\Phi _0}(z) = a + ib\] is a complex constant,and \[{\Phi _1}(z),{\Phi _2}(z)\] are two analytic functions. The proofs of the above stated theorems are based on a prior estimates for the bounded solutes of these boundary value problems and Leray-Schander theorem. Besides, we have considered also the solvability of Problem R-H and Problem P for Eq. (6) in the multiply connected domain.  相似文献   

4.
该文研究集值映象方程0∈T(z)的解的迭代逼近,其中T是极大强单调算子.设{x^k}与{e^k}是由不精确邻近点算法x^{k+1}+c_kT(x^{k+1})> x^k+e^{k+1}生成的序列,满足‖e^{k+1}‖≤η_k‖x^{k+1}_x^k‖, ∑^∞_{k=0}(η_k-1)<+∞且inf_(k≥0) η_k=μ≥1.在适当的限制下证明了,{x^k}收敛到T的一个根当且仅当 lim inf_{k→+∞} d(x^k,Z)=0,其中Z是方程0∈T(z)的解集  相似文献   

5.
题(2011年江苏20)设M为部分正整数组成的集合,数列{an}的首项a1=1,前n项的和为Sn.已知对任意的整数k∈M,当整数n>k时,Sn+k+Sn-k=2(Sn+Sk)都成立.  相似文献   

6.
研究了二次域Q(7~(1/2))中单位V_n+U_n7~(1/2)=(8+3 7~(1/2))~n所给出的两个递归数列{V_n},{U_n}中的Pronic数问题,找到了{V_n},{U_n}中的所有的Pronic数.作为应用,给出了与其相关的两个不定方程的整数解.  相似文献   

7.
设$W_{\beta}(x)=\exp(-\frac{1}{2}|x|^{\beta})~(\beta > 7/6)$ 为Freud权, Freud正交多项式定义为满足下式$\int_{- \infty}^{\infty}p_{n}(x)p_{m}(x)W_{\beta}^{2}(x)\rd x=\left \{ \begin{array}{ll} 0 & \hspace{3mm} n \neq m , \\ 1 & \hspace{3mm}n = m \end{array} \right.$的  相似文献   

8.
题83已知数列{an}为等差数列,数列{bn}为等比数列.(1)若a1+a2+a3=-12,b1·b2·b3=27,且a1+b1,a2+b2,a3+b3是各项均为正整数的等比数列的前3项,求数列{an},{bn}的通项;  相似文献   

9.
The Catalan numbers $1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862,\ldots$ are given by $C(n)=\frac{1}{n+1}\binom{2n}{n}$ for $n\geq 0$. They are named for Eugene Catalan who studied them as early as 1838. They were also found by Leonhard Euler (1758), Nicholas von Fuss (1795), and Andreas von Segner (1758). The Catalan numbers have the binomial generating function $$\mathbf{C}(z) = \sum_{n=0}^{\infty}C(n)z^n = \frac{1 - \sqrt{1-4z}}{2z}$$ It is known that powers of the generating function $\mathbf{C}(z)$ are given by $$\mathbf{C}^a(z) = \sum_{n=0}^{\infty}\frac{a}{a+2n}\binom{a+2n}{n}z^n.$$ The above formula is not as widely known as it should be. We observe that it is an immediate, simple consequence of expansions first studied by J. L. Lagrange. Such series were used later by Heinrich August Rothe in 1793 to find remarkable generalizations of the Vandermonde convolution. For the equation $x^3 - 3x + 1 =0$, the numbers $\frac{1}{2k+1}\binom{3k}{k}$ analogous to Catalan numbers occur of course. Here we discuss the history of these expansions. and formulas due to L. C. Hsu and the author.  相似文献   

10.
含最大值项二阶中立型差分方程的渐近性   总被引:2,自引:0,他引:2  
考虑含最大值项二阶中立型差分方程其中{an},{pn}和{qn}为实数列,k和■为整数且k≥1,■≥0,我们研究了方程(*)非振动解的渐近性.通过例子说明了含最大值项的方程和相应的不含最大值项方程之间的区别.  相似文献   

11.
<正>1问题的引入考察小于30的奇质数p,当p为何值时,二次同余方程x2+1≡0(modp)有解.这是一道数论题目,入手非常容易,结果如下:单纯回答题目中的问题并不难,显然,这些表面的结论之中包含着某些规律,其背后的本质是什么?本文通过深入探讨,运用二次剩余概念,揭示这些结论的实质内涵.2联想与推测在数论中,一个整数x对另一个整数p的二次剩余指x2+1≡0(modp)有解.这是一道数论题目,入手非常容易,结果如下:单纯回答题目中的问题并不难,显然,这些表面的结论之中包含着某些规律,其背后的本质是什么?本文通过深入探讨,运用二次剩余概念,揭示这些结论的实质内涵.2联想与推测在数论中,一个整数x对另一个整数p的二次剩余指x2除以p得到的余数.当存在某个x,使得x2除以p得到的余数.当存在某个x,使得x2≡a(modp)成立时,  相似文献   

12.
设\[\mathfrak{M} = \sum {F{u_i}} \]是除环F上向量空间,P是F的一个子除环且在F中是Galois,即存 在F的一个自同构群G使\[I(G) = P\].记Ф是F的中心,\[{G_0}\]是属于G的内自同构群, \[{G_0}\]的元素记为\[{I_r},r \in F\];,记\[{E^'} = \sum\limits_{{I_{{r_j}}} \in {G_0}} {{\Phi _{{r_j}}}} \]是G的代数,\[P' = {C_F}({E^'})\]是\[{E^'}\]在F中的中心化子.记\[\mathfrak{U}(F,\mathfrak{M})\]是\[\mathfrak{M}\]的F-线性变换完全环,\[{T_v}(F,\mathfrak{M})\]是\[\mathfrak{U}(F,\mathfrak{M})\]中所有秩小于\[\mathcal{X}{_v}\]的元素集合,那末我们有如下主要结果: (1)\[{[F:P']_L} = n\]有限当且仅当\[{T_v}(P',\mathfrak{M}) = \sum\limits_{j = 1}^n \oplus {r_{jL}}{T_v}(F,\mathfrak{M})\],其中\[{r_j} \in {E^'}\],\[{r_{jL}}\]表示元素\[{r_j}\]的标量左乘. (2)\[{[P':P]_L} = t\]有限当且仅当凡\[{T_v}(P,\mathfrak{M}) = \sum\limits_{j = 1}^t \oplus {S_j}{T_v}(P',\mathfrak{M})\],其中\[{S_j}\]表示\[\mathfrak{M}\]的F-半线变换自同构,它的伴随同构\[{\psi _j} \in G\]. ⑶如有某个序数v使\[{T_v}(P,\mathfrak{M})\],\[{T_v}(P',\mathfrak{M})\]及\[{T_v}(F,\mathfrak{M})\]满足⑴及(2)中的关系 式,那末对任何\[{T_\mu }(P,\mathfrak{M})\],\[{T_\mu }(P',\mathfrak{M})\]及\[{T_\mu }(F,\mathfrak{M})\]皆满足(1)及(2)中的关系式.特别 对\[\mathfrak{U}(P,\mathfrak{M})\],\[\mathfrak{U}(P',\mathfrak{M})\]及\[\mathfrak{U}(F,\mathfrak{M})\]也是如此. ⑷如果\[{[F:P]_L}\]有限,那末必有\[{C_p}({C_F}(E')) = E'\],\[{[F:P']_L} = \dim E'\],\[{[P':P']_L} = [G/{G_0}]\],其中dim E'表示E'在\[\Phi \]上的维数,\[[G/{G_0}]\]表示\[{G_0}\]在G中的指数,特别\[G\]是 Galois 群,则 \[{C_F}(P') = {C_F}(P) = E'\]. (5)若\[{\tilde G}\]是F的另一自同构群且\[I(G) = I(\tilde G)\],那末必有\[[G/{G_0}] = [\tilde G/{{\tilde G}_0}]\], \[\dim {\kern 1pt} {\kern 1pt} E' = \dim {\kern 1pt} {\kern 1pt} \tilde E'\]. 其中\[{\kern 1pt} \tilde E'\]表示\[{\tilde G}\]的代数. 如果P取为F的中心时,于是从上述结果(1)就得出熟知的定理:\[[F:\Phi ]\]是有限的当 且仅当\[\mathfrak{U}(\Phi ,\mathfrak{M}) = \mathfrak{U}(F,\mathfrak{M}){ \otimes _\Phi }{F_L}\]. 另方面,运用我们上述的结果,可导出除环F的有限Galois理论.  相似文献   

13.
完全对换网络是基于 Cayley 图模型的一类重要互连网络. 一个图 G 的 k-限制点(边)连通度是使得 G-F 不连通且每个分支至少有 k 个顶点的最小点(边)子集 F 的基数, 记作 \kappa_{k}(\lambda_{k}). 它是衡量网络可靠性的重要参数之一, 也是图的容错性的一种精化了的度量. 一般地, 网络的 k-限制点(边)连通度越大, 它的连通性就越好. 证明了完全对换网络 CT_{n} 的 2-限制点(边)连通度和 3-限制点(边)连通度, 具体来说: 当 n\geq4 时, \kappa_{2}(CT_{n})=n(n-1)-2, \kappa_{3}(CT_{n})=\frac{3n(n-1)}{2}-6; 当 n\geq3 时, \lambda_{2}(CT_{n})=n(n-1)-2, \lambda_{3}(CT_{n})=\frac{3n(n-1)}{2}-4.  相似文献   

14.
《数学通讯》2021,(4):55-57,61
题342在数列{a_n}中,若对任意的n∈N*,都有a_n≤M(实常数)成立,且对任意的aa,则称数列{a_n}具有性质P(M).(1)设等比数列{b_n}(n∈N*)的前n项和为Tn,若b_32+b_4=0,b2-2b_3=0;证明:数列{T_n}具有性质P(2);(2)数列{a_n}的前n项和S_n满足:nSm+n-(m+n)S_n+3(m+n)mn=0(m,n∈N*);若数列{S_n}具有性质P(884),求a_1的取值集合.  相似文献   

15.
早在20世纪50年代,Zarankiewicz 猜想完全2-部图K_{m,n}(m\leq n)的交叉数为\lfloor\frac{m}{2}\rfloor\times \lfloor\frac{m-1}{2}\rfloor\times\lfloor\frac{n}{2}\rfloor\times\lfloor\frac{n-1}{2}\rfloor (对任意实数x,\lfloor x\rfloor表示不超过x的最大整数). 目前这一猜想的正确性只证明了当m\leq6时成立. 假定著名的Zarankiewicz的猜想对m=7的情形成立,确定了6-轮W_{6}与星S_{n}的笛卡尔积图的交叉是 cr(W_{6}\times S_{n})=9\lfloor\frac{n}{2}\rfloor\times\lfloor\frac{n-1}{2}\rfloor+2n+5\lfloor\frac{n}{2}\rfloor.  相似文献   

16.
关注如下的对流扩散方程 $$ u_{t}=\text{div}(|\nabla u^{m}|^{p-2}\nabla u^{m})+\sum_{i=1}^{N}\frac{\partial b_{i}(u^{m})}{\partial x_{i}} $$ 的初边值问题. 若 $p>1+\frac{1}{m}$, 通过考虑正则化问题的解 $u_{k}$, 利用 Moser 迭代技巧, 得到了$u_{k}$ 的 $L^{\infty}$ 模与 梯度 $\nabla u_{k}$ 的 $L^{p}$ 模的局部有界性. 利用紧致性定理, 得到了对流扩散方程本身解的存在性. 若 $p<1+\frac{1}{m},\ p>2$ 或者 $p=1+\frac{1}{m}$, 利用类似的方法可以得到解的存在性. 证明了解的唯一性, 同时讨论了正性和熄灭性等解的性质.  相似文献   

17.
设H=(V,E)是以V为顶点集, E为(超)边集的超图. 如果H的每条边均含有k个顶点, 则称H是k-一致超图. 超图H的点子集T称为它的一个横贯, 如果T 与H 的每条边均相交. 超图H的全横贯是指它的一个横贯T, 并且T还满足如下性质: T中每个顶点均至少有一个邻点在T中. H 的全横贯数定义为H 的最小全横贯所含顶点的数目, 记作\tau_{t}(H). 对于整数k\geq 2, 令b_{k}=\sup_{H\in{\mathscr{H}}_{k}}\frac{\tau_{t}(H)}{n_{H}+m_{H}}, 其中n_H=|V|, m_H=|E|, {\mathscr{H}}_{k} 表示无孤立点和孤立边以及多重边的k-一致超图类. 最近, Bujt\'as和Henning等证明了如下结果: b_{2}=\frac{2}{5}, b_{3}=\frac{1}{3}, b_{4}=\frac{2}{7}; 当k\geq 5 时, 有b_{k}\leq \frac{2}{7}以及b_{6}\leq \frac{1}{4}; 当k\geq 7 时, b_{k}\leq \frac{2}{9}. 证明了对5-一致超图, b_{5}\leq \frac{4}{15}, 从而改进了当k=5 时b_k的上界.  相似文献   

18.
该文考虑了下面的具一维$p$\,-Laplacian算子的多点边值问题 $ \left\{ \begin{array}{rl} &;\disp (\phi_{p}(x'(t)))'+h(t)f(t,x(t),x'(t))=0,\hspace{3mm}01,~\alpha_{i}>0,~\beta_{i}>0,~0<\sum\limits_{i=1}^{m-1}\alpha_{i}\xi_{i}\leq1,~ 0<\sum\limits_{i=1}^{m-1}\beta_{i}(1-\eta_{i})\leq1,~0=\xi_{0} <\xi_{1}<\xi_{2}<\cdots<\xi_{m-1}<\eta_{1}<\eta_{2}<\cdots<\eta_{m-1}<\eta_{m}=1,~i=1,2,\cdots,m-1.$ 通过运用锥上的不动点定理, 该文得到了至少三个正解的存在性. 有趣的是文中的边界条件是一个新型的Sturm-Liouville型边界条件, 这类边值问题到目前为止还很少被研究.  相似文献   

19.
苏步青 《数学学报》1961,11(1):41-46
<正> 本文是继前文[1]来討論n維射影空間S_n(n≥4)的共軛网有关的一些性貭,特別是第k类共軛和調和性貭.我們已經闡明,当k=1时,这些性貭变为普通共軛性貭和調和性貭.这里,很自然地发生一个問題:当一个拉普拉斯叙列{…X_3X_1X_2X_4…}是另一个拉普拉斯叙列{…A_3A_1A_2A_4…}的第k类內接叙列吋,能不能在这两个之間嵌入k-1个(k>1)拉普拉斯叙列{…A_3~((h))A_1~((h))A_2~((h))A_4~((h))…}(h=1,2,…,k-1),使一个內接着一个而且最后的一个內接于{…A_3A_1A_2A_4…}呢?我們将証明,問題中的嵌入完全可能,这  相似文献   

20.
首先给出了渐近伪压缩映射的黏滞近似不动点序列的新定义,继而证明了如下逼近定理:令K为实Banach空间E的非空闭凸有界子集,T:K→K为一致L-Lipschitz、具数列{εn}的一致渐近正则、具数列{kn}的渐近伪压缩映射.假设迭代序列{xn}定义为:x1∈K,对n≥1,xn+1:=λnθnf(xn)+[1-λn(1+θn)]xn+λnTnxn,其中{λn},{θn}(0,1)且满足一定条件,则:当n→∞时,‖xn-Txn‖→0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号