首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Given a smooth domain ${\Omega\subset\mathbb{R}^N}$ such that ${0 \in \partial\Omega}$ and given a nonnegative smooth function ?? on ???, we study the behavior near 0 of positive solutions of ???u?=?u q in ?? such that u =? ?? on ???\{0}. We prove that if ${\frac{N+1}{N-1} < q < \frac{N+2}{N-2}}$ , then ${u(x)\leq C |x|^{-\frac{2}{q-1}}}$ and we compute the limit of ${|x|^{\frac{2}{q-1}} u(x)}$ as x ?? 0. We also investigate the case ${q= \frac{N+1}{N-1}}$ . The proofs rely on the existence and uniqueness of solutions of related equations on spherical domains.  相似文献   

2.
We study formal solutions f of the generalized Dhombres functional equation ${f(zf(z)) = \varphi(f(z))}$ . Unlike in the situation where f(0) =?w 0 and ${w_0 \in \mathbb{C}{\setminus} \mathbb{E}}$ where ${\mathbb{E}}$ denotes the complex roots of 1, which were already discussed, we investigate solutions f where f(0)?=?1. To obtain solutions in this case we use new methods which differ from the already existing ones.  相似文献   

3.
We consider the non-homogeneous generalised Burgers equation $$\frac{\partial u}{\partial t} + f'(u)\frac{\partial u}{\partial x} -\nu \frac{\partial^2 u}{\partial x^2} = \eta,\ t \geq 0,\ x \in S^1.$$ Here f is strongly convex and satisfies a growth condition, ν is small and positive, while η is a random forcing term, smooth in space and white in time. For any solution u of this equation we consider the quasi-stationary regime, corresponding to ${t \geq T_1}$ , where T 1 depends only on f and on the distribution of η. We obtain sharp upper and lower bounds for Sobolev norms of u averaged in time and in ensemble. These results yield sharp upper and lower bounds for natural analogues of quantities characterising the hydrodynamical turbulence. All our bounds do not depend on the initial condition or on t for ${t \geq T_1}$ , and hold uniformly in ν. Estimates similar to some of our results have been obtained by Aurell, Frisch, Lutsko and Vergassola on a physical level of rigour; we use an argument from their article.  相似文献   

4.
5.
The purpose of this paper is to prove local upper and lower bounds for weak solutions of semilinear elliptic equations of the form ???u =?cu p , with 0 < p < p s = (d + 2)/(d - 2), defined on bounded domains of ${{\mathbb{R}^d}, d \geq 3}$ , without reference to the boundary behaviour. We give an explicit expression for all the involved constants. As a consequence, we obtain local Harnack inequalities with explicit constants, as well as gradient bounds.  相似文献   

6.
In this paper, we prove the existence of infinitely many small solutions to the following quasilinear elliptic equation ?Δ p(x) u +  |u| p(x)-2 uf (x, u) in a smooth bounded domain Ω of ${\mathbb{R}^N}$ with nonlinear boundary conditions ${|\nabla u|^{p-2}\frac{\partial u}{\partial\nu} = |u|^{{q(x)-2}}u}$ . We also assume that ${\{q(x) = p^\ast(x)\}\neq \emptyset}$ , where p*(x) =  Np(x)/(N ? p(x)) is the critical Sobolev exponent for variable exponents. The proof is based on a new version of the symmetric mountain-pass lemma due to Kajikiya, and property of these solutions is also obtained.  相似文献   

7.
LetΩ ? ?2 be a smooth bounded simply connected domain. Consider the functional $$E_\varepsilon (u) = \frac{1}{2}\int\limits_\Omega {\left| {\nabla u} \right|^2 + \frac{1}{{4\varepsilon ^2 }}} \int\limits_\Omega {(|u|^2 - 1)^2 } $$ on the classH g 1 ={u εH 1(Ω; ?);u=g on ?Ω} whereg:?Ω? → ? is a prescribed smooth map with ¦g¦=1 on ?Ω? and deg(g, ?Ω)=0. Let uu ε be a minimizer for Eε onH g 1 . We prove that uε → u0 in \(C^{1,\alpha } (\bar \Omega )\) as ε → 0, where u0 is identified. Moreover \(\left\| {u_\varepsilon - u_0 } \right\|_{L^\infty } \leqslant C\varepsilon ^2 \) .  相似文献   

8.
This paper deals with the blow-up rate and uniqueness of large solutions of the elliptic equation ${\Delta u = b(x)f(u)+c(x)g(u)|\nabla u|^q}$ in ${\Omega \subset \mathbb{R}^N}$ , where q > 0, f(u) and g(u) are regularly varying functions at infinity, and the weight functions ${b(x),\,c(x) \in C^\alpha(\Omega,\,\mathbb{R}^+)}$ , 0 < α < 1, may be singular or degenerate on the boundary ${\partial\Omega}$ . Combining the regular variation theoretic approach of Cîrstea–R?dulescu and the systematic approach of Bandle–Giarrusso, we are able to improve and generalize most of the previously available results in the literature.  相似文献   

9.
We discuss the possible removability of sets for continuous solutions of semilinear elliptic equations of the form ???u =?F(x, u). In particular, we show that a set E in ${\mathbb{R}^{n}}$ is removable for ??-H?lder continuous solutions of such equations if and only if n ? 2?+???-dimensional Hausdorff measure of E is zero.  相似文献   

10.
It is known that the one-dimensional nonlinear heat equation ut = f(u)x1x1,f’(u) > 0,u(±∞,t) = u±,u+ = u_ has a unique self-similar solution u(x1/1+t).In multi-dimensional space,u(x1/1+t) is called a planar diffusion wave.In the first part of the present paper,it is shown that under some smallness conditions,such a planar diffusion wave is nonlinearly stable for the nonlinear heat equation:ut-△f(u) = 0,x ∈ Rn.The optimal time decay rate is obtained.In the second part of this paper,it is further shown that this planar diffusion wave is still nonlinearly stable for the quasilinear wave equation with damping:utt + utt+ △f(u) = 0,x ∈ Rn.The time decay rate is also obtained.The proofs are given by an elementary energy method.  相似文献   

11.
We study the Laplace equation in the half-space ${\mathbb{R}_{+}^{n}}$ with a nonlinear supercritical Robin boundary condition ${\frac{\partial u}{\partial\eta }+\lambda u=u\left\vert u\right\vert^{\rho-1}+f(x)}$ on ${\partial \mathbb{R}_{+}^{n}=\mathbb{R}^{n-1}}$ , where n ≥ 3 and λ ≥ 0. Existence of solutions ${u \in E_{pq}= \mathcal{D}^{1, p}(\mathbb{R}_{+}^{n}) \cap L^{q}(\mathbb{R}_{+}^{n})}$ is obtained by means of a fixed point argument for a small data $f \in {L^{d}(\mathbb{R}^{n-1})}$ . The indexes p, q are chosen for the norm ${\Vert\cdot\Vert_{E_{pq}}}$ to be invariant by scaling of the boundary problem. The solution u is positive whether f(x) > 0 a.e. ${x\in\mathbb{R}^{n-1}}$ . When f is radially symmetric, u is invariant under rotations around the axis {x n  = 0}. Moreover, in a certain L q -norm, we show that solutions depend continuously on the parameter λ ≥ 0.  相似文献   

12.
Consider the n-dimensional nonautonomous system ?(t) = A(t)G(x(t)) ? B(t)F(x(t ? τ(t))) Let u = (u 1,…,u n ), $f^{i}_{0}={\rm lim}_{\|{\rm u}\|\rightarrow 0}{f^{i}(\rm u)\over \|u\|}$ , $f^{i}_{\infty}={\rm lim}_{\|{\rm u}\|\rightarrow \infty}{f^{i}(\rm u)\over \|u\|}$ , i = l,…,n, F = (f 1…,f n ), ${\rm F_{0}}={\rm max}_{i=1,\ldots,n}{f^{i}_{0}}$ and ${\rm F_{\infty}}={\rm max}_{i=1,\ldots,n}{f^{i}_{\infty}}$ . Under some quite general conditions, we prove that either F0 = 0 and F = ∞, or F0 = ∞ and F = 0, guarantee the existence of positive periodic solutions for the system for all λ > 0. Furthermore, we show that F0 = F = 0, or F = F = ∞ guarantee the multiplicity of positive periodic solutions for the system for sufficiently large, or small λ, respectively. We also establish the nonexistence of the system when either F0 and F > 0, or F0 and F, < for sufficiently large, or small λ, respectively. We shall use fixed point theorems in a cone.  相似文献   

13.
We study the problem of minimizing ${\int_{\Omega} L(x,u(x),Du(x))\,{\rm d}x}$ over the functions ${u\in W^{1,p}(\Omega)}$ that assume given boundary values ${\phi}$ on ???. We assume that L(x, u, Du)?=?F(Du)?+?G(x, u) and that F is convex. We prove that if ${\phi}$ is continuous and ?? is convex, then any minimum u is continuous on the closure of ??. When ?? is not convex, the result holds true if F(Du)?=?f(|Du|). Moreover, if ${\phi}$ is Lipschitz continuous, then u is H?lder continuous.  相似文献   

14.
In this work, we are mainly concerned with the existence of positive solutions for the fractional boundary-value problem $$ \left\{ {\begin{array}{*{20}{c}} {D_{0+}^{\alpha }D_{0+}^{\alpha }u=f\left( {t,u,{u}^{\prime},-D_{0+}^{\alpha }u} \right),\quad t\in \left[ {0,1} \right],} \hfill \\ {u(0)={u}^{\prime}(0)={u}^{\prime}(1)=D_{0+}^{\alpha }u(0)=D_{0+}^{{\alpha +1}}u(0)=D_{0+}^{{\alpha +1}}u(1)=0.} \hfill \\ \end{array}} \right. $$ Here ?? ?? (2, 3] is a real number, $ D_{0+}^{\alpha } $ is the standard Riemann?CLiouville fractional derivative of order ??. By virtue of some inequalities associated with the fractional Green function for the above problem, without the assumption of the nonnegativity of f, we utilize the Krasnoselskii?CZabreiko fixed-point theorem to establish our main results. The interesting point lies in the fact that the nonlinear term is allowed to depend on u, u??, and $ -D_{0+}^{\alpha } $ .  相似文献   

15.
In this paper, we establish some error bounds for the continuous piecewise linear finite element approximation of the following problem: Let Ω be an open set in ? d , withd=1 or 2. GivenT>0,p ∈ (1, ∞),f andu 0; finduK, whereK is a closed convex subset of the Sobolev spaceW 0 1,p (Ω), such that for anyvK $$\begin{gathered} \int\limits_\Omega {u_1 (\upsilon - u) dx + } \int\limits_\Omega {\left| {\nabla u} \right|^{p - 2} } \nabla u \cdot \nabla (\upsilon - u) dx \geqslant \int\limits_\Omega {f(\upsilon - u) dx for} a.e. t \in (0,T], \hfill \\ u = 0 on \partial \Omega \times (0,T] and u(0,x) = u_0 (x) for x \in \Omega . \hfill \\ \end{gathered} $$ We prove error bounds in energy type norms for the fully discrete approximation using the backward Euler time discretisation. In some notable cases, these error bounds converge at the optimal rate with respect to the space discretisation, provided the solutionu is sufficiently regular.  相似文献   

16.
In this paper we investigate the regularity of solutions for the following degenerate partial differential equation $$\left \{\begin{array}{ll} -\Delta_p u + u = f \qquad {\rm in} \,\Omega,\\ \frac{\partial u}{\partial \nu} = 0 \qquad \qquad \,\,\,\,\,\,\,\,\,\, {\rm on} \,\partial \Omega, \end{array}\right.$$ when ${f \in L^q(\Omega), p > 2}$ and q ≥ 2. If u is a weak solution in ${W^{1, p}(\Omega)}$ , we obtain estimates for u in the Nikolskii space ${\mathcal{N}^{1+2/r,r}(\Omega)}$ , where r = q(p ? 2) + 2, in terms of the L q norm of f. In particular, due to imbedding theorems of Nikolskii spaces into Sobolev spaces, we conclude that ${\|u\|^r_{W^{1 + 2/r - \epsilon, r}(\Omega)} \leq C(\|f\|_{L^q(\Omega)}^q + \| f\|^{r}_{L^q(\Omega)} + \|f\|^{2r/p}_{L^q(\Omega)})}$ for every ${\epsilon > 0}$ sufficiently small. Moreover, we prove that the resolvent operator is continuous and compact in ${W^{1,r}(\Omega)}$ .  相似文献   

17.
Consider the stationary motion of an incompressible Navier–Stokes fluid around a rotating body $ \mathcal{K} = \mathbb{R}^3 \, \backslash \, {\Omega}$ which is also moving in the direction of the axis of rotation. We assume that the translational and angular velocities U, ω are constant and the external force is given by f = div F. Then the motion is described by a variant of the stationary Navier–Stokes equations on the exterior domain Ω for the unknown velocity u and pressure p, with U, ω, F being the data. We first prove the existence of at least one solution (u, p) satisfying ${\nabla u, p \in L_{3/2, \infty} (\Omega)}$ and ${u \in L_3, \infty (\Omega)}$ under the smallness condition on ${|U| + |\omega| + ||F||_{L_{3/2, \infty} (\Omega)}}$ . Then the uniqueness is shown for solutions (u, p) satisfying ${\nabla u, p \in L_{3/2, \infty} (\Omega) \cap L_{q, r} (\Omega)}$ and ${u \in L_{3, \infty} (\Omega) \cap L_{q*, r} (\Omega)}$ provided that 3/2 <? q <? 3 and ${{F \in L_{3/2, \infty} (\Omega) \cap L_{q, r} (\Omega)}}$ . Here L q,r (Ω) denotes the well-known Lorentz space and q* =? 3q /(3 ? q) is the Sobolev exponent to q.  相似文献   

18.
We consider the Monge–Ampère equation det D 2 u = b(x)f(u) > 0 in Ω, subject to the singular boundary condition u = ∞ on ?Ω. We assume that \(b\in C^\infty(\overline{\Omega})\) is positive in Ω and non-negative on ?Ω. Under suitable conditions on f, we establish the existence of positive strictly convex solutions if Ω is a smooth strictly convex, bounded domain in \({\mathbb R}^N\) with N ≥ 2. We give asymptotic estimates of the behaviour of such solutions near ?Ω and a uniqueness result when the variation of f at ∞ is regular of index q greater than N (that is, \(\lim_{u\to \infty} f(\lambda u)/f(u)=\lambda^q\) , for every λ > 0). Using regular variation theory, we treat both cases: b > 0 on ?Ω and \(b\equiv 0\) on ?Ω.  相似文献   

19.
Let n ≥ 3, 0 < m ≤ (n ? 2)/n, p > max(1, (1 ? m)n/2), and ${0 \le u_0 \in L_{loc}^p(\mathbb{R}^n)}$ satisfy ${{\rm lim \, inf}_{R\to\infty}R^{-n+\frac{2}{1-m}} \int_{|x|\le R}u_0\,dx = \infty}$ . We prove the existence of unique global classical solution of u t = Δu m , u > 0, in ${\mathbb{R}^n \times (0, \infty), u(x, 0) = u_0(x)}$ in ${\mathbb{R}^n}$ . If in addition 0 < m < (n ? 2)/n and u 0(x) ≈ A|x|?q as |x| → ∞ for some constants A > 0, qn/p, we prove that there exist constants α, β, such that the function v(x, t) = t α u(t β x, t) converges uniformly on every compact subset of ${\mathbb{R}^n}$ to the self-similar solution ψ(x, 1) of the equation with ψ(x, 0) = A|x|?q as t → ∞. Note that when m = (n ? 2)/(n + 2), n ≥ 3, if ${g_{ij} = u^{\frac{4}{n+2}}\delta_{ij}}$ is a metric on ${\mathbb{R}^n}$ that evolves by the Yamabe flow ?g ij /?t = ?Rg ij with u(x, 0) = u 0(x) in ${\mathbb{R}^n}$ where R is the scalar curvature, then u(x, t) is a global solution of the above fast diffusion equation.  相似文献   

20.
In the first part, we investigate the singular BVP \(\tfrac{d} {{dt}}^c D^\alpha u + (a/t)^c D^\alpha u = \mathcal{H}u\) , u(0) = A, u(1) = B, c D α u(t)| t=0 = 0, where \(\mathcal{H}\) is a continuous operator, α ∈ (0, 1) and a < 0. Here, c D denotes the Caputo fractional derivative. The existence result is proved by the Leray-Schauder nonlinear alternative. The second part establishes the relations between solutions of the sequence of problems \(\tfrac{d} {{dt}}^c D^{\alpha _n } u + (a/t)^c D^{\alpha _n } u = f(t,u,^c D^{\beta _n } u)\) , u(0) = A, u(1) = B, \(\left. {^c D^{\alpha _n } u(t)} \right|_{t = 0} = 0\) where a < 0, 0 < β n α n < 1, lim n→∞ β n = 1, and solutions of u″+(a/t)u′ = f(t, u, u′) satisfying the boundary conditions u(0) = A, u(1) = B, u′(0) = 0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号