首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
在等价非线性扩展模型的基础上,给出了求解一类随机非线性规划的序列二次规划(sequential quadratic programming,简称SQP)算法.与标准SQP算法不同,本文算法采用积极集方法求解SQP子问题以加快收敛速度,并采用滤子方法确定搜索步长,克服了传统方法选取惩罚因子的困难.在一定条件下证明了所给算法的收敛性.最后,通过一个数值例子验证了该方法的有效性.  相似文献   

2.
一类求解非线性规划问题的滤子序列二次规划(SQP)方法被提出.为了提高收敛速度,给目标函数和约束违反度函数都设置了斜边界.二次规划子问题(QP)设置为两项:不等式约束QP和等式约束QP.两个子问题产生的搜索方向进行线性迭加后为算法的搜索方向.这样的设置可以改善收敛性,并调节算法运行中的一些不良效果.在较温和的条件下,可得到全局收敛性.  相似文献   

3.
本文对不等式优化问题提出了一个修正的序列二次规划算法(SQP).该算法适用于退化问题一积极约束梯度线性相关且严格互补条件不成立,并且算法是可行的,具有整体收敛与超线性收敛性.  相似文献   

4.
本文,在无严格互补条件下,对非线性不等式约束最优化问题提出了一个新的序列线性方程组(简称SSLE)算法.算法有两个重要特征:首先,每次迭代,只须求解一个线性方程组或一个广义梯度投影阵,且线性方程组可以无解.其次,初始点可以任意选取.在无严格互补条件下,算法仍有全局收敛性、强收敛性、超线性收敛性及二次收敛性.文章的最后,还对算法进行了初步的数值实验.  相似文献   

5.
不等式约束优化一个新的SQP算法   总被引:5,自引:0,他引:5  
朱志斌  张可村 《计算数学》2004,26(4):413-426
本文提出了一个处理不等式约束优化问题的新的SQP算法.和传统的SQP算法相比,该算法每步只需求解一个仅含等式约束的子二次规划,从而减少了算法的计算工作量.在适当的条件下,证明算法是全局收敛的且具有超线性收敛速度.数值实验表明算法是有效的.  相似文献   

6.
基于一个有效约束识别技术, 给出了具有不等式约束的非线性最优化问题的一个可行SSLE算法. 为获得搜索方向算法的每步迭代只需解两个或三个具有相同系数矩阵的线性方程组. 在一定的条件下, 算法全局收敛到问题的一个KKT点. 没有严格互补条件, 在比强二阶充分条件弱的条件下算法具有超线性收敛速度.  相似文献   

7.
一个新的共轭投影梯度算法及其超线性收敛性   总被引:7,自引:0,他引:7  
利用共轭投影梯度技巧,结合SQP算法的思想,建立了一个具有显示搜索方向的新算法,在适当的条件下,证明算法是全局收敛和强收敛的,且具有超线性收敛性,最后数值实验表明算法是有效的。  相似文献   

8.
建立了一个新的SQP算法,提出了一阶可行条件这一新概念.对已有SQP型算法进行改进,减少计算工作量,证明了算法具有全局收敛及超线性收敛性.数值实验表明算法是有效的.  相似文献   

9.
徐庆娟  简金宝 《数学杂志》2014,34(6):1155-1162
本文研究了求解半无限规划离散化问题(P)的一个新的算法.利用序列二次规划(SQP)两阶段方法和约束指标集的修正技术,提出了求解(P)的一个两阶段SQP算法.算法结构简单,搜索方向的计算成本较低.在适当的条件下,证明了算法具有全局收敛性.数值试验结果表明算法是有效的.推广了文献[4]中求解(P)的算法.  相似文献   

10.
提出一种新的序列线性方程组(SSLE)算法解非线性不等式约束优化问题.在算法的每步迭代,子问题只需解四个简化的有相同的系数矩阵的线性方程组.证明算法是可行的,并且不需假定聚点的孤立性、严格互补条件和积极约束函数的梯度的线性独立性得到算法的全局收敛性.在一定条件下,证明算法的超线性收敛率.  相似文献   

11.
AbstractIn this paper, a new superlinearly convergent algorithm of sequential systems of linear equations (SSLE) for nonlinear optimization problems with inequality constraints is proposed. Since the new algorithm only needs to solve several systems of linear equations having a same coefficient matrix per iteration, the computation amount of the algorithm is much less than that of the existing SQP algorithms per iteration. Moreover, for the SQP type algorithms, there exist so-called inconsistent problems, i.e., quadratic programming subproblems of the SQP algorithms may not have a solution at some iterations, but this phenomenon will not occur with the SSLE algorithms because the related systems of linear equations always have solutions. Some numerical results are reported.  相似文献   

12.
In Ref. 1, a new superlinearly convergent algorithm of sequential systems of linear equations (SSLE) for nonlinear optimization problems with inequality constraints was proposed. At each iteration, this new algorithm only needs to solve four systems of linear equations having the same coefficient matrix, which is much less than the amount of computation required for existing SQP algorithms. Moreover, unlike the quadratic programming subproblems of the SQP algorithms (which may not have a solution), the subproblems of the SSLE algorithm are always solvable. In Ref. 2, it is shown that the new algorithm can also be used to deal with nonlinear optimization problems having both equality and inequality constraints, by solving an auxiliary problem. But the algorithm of Ref. 2 has to perform a pivoting operation to adjust the penalty parameter per iteration. In this paper, we improve the work of Ref. 2 and present a new algorithm of sequential systems of linear equations for general nonlinear optimization problems. This new algorithm preserves the advantages of the SSLE algorithms, while at the same time overcoming the aforementioned shortcomings. Some numerical results are also reported.  相似文献   

13.
For current sequential quadratic programming (SQP) type algorithms, there exist two problems: (i) in order to obtain a search direction, one must solve one or more quadratic programming subproblems per iteration, and the computation amount of this algorithm is very large. So they are not suitable for the large-scale problems; (ii) the SQP algorithms require that the related quadratic programming subproblems be solvable per iteration, but it is difficult to be satisfied. By using ε-active set procedure with a special penalty function as the merit function, a new algorithm of sequential systems of linear equations for general nonlinear optimization problems with arbitrary initial point is presented. This new algorithm only needs to solve three systems of linear equations having the same coefficient matrix per iteration, and has global convergence and local superlinear convergence. To some extent, the new algorithm can overcome the shortcomings of the SQP algorithms mentioned above. Project partly supported by the National Natural Science Foundation of China and Tianyuan Foundation of China.  相似文献   

14.
The stabilized sequential quadratic programming (SQP) method has nice local convergence properties: it possesses local superlinear convergence under very mild assumptions not including any constraint qualifications. However, any attempts to globalize convergence of this method indispensably face some principal difficulties concerned with intrinsic deficiencies of the steps produced by it when relatively far from solutions; specifically, it has a tendency to produce long sequences of short steps before entering the region where its superlinear convergence shows up. In this paper, we propose a modification of the stabilized SQP method, possessing better “semi-local” behavior, and hence, more suitable for the development of practical realizations. The key features of the new method are identification of the so-called degeneracy subspace and dual stabilization along this subspace only; thus the name “subspace-stabilized SQP”. We consider two versions of this method, their local convergence properties, as well as a practical procedure for approximation of the degeneracy subspace. Even though we do not consider here any specific algorithms with theoretically justified global convergence properties, subspace-stabilized SQP can be a relevant substitute for the stabilized SQP in such algorithms using the latter at the “local phase”. Some numerical results demonstrate that stabilization along the degeneracy subspace is indeed crucially important for success of dual stabilization methods.  相似文献   

15.
In this paper, we present an extension to the NE/SQP method; the latter is a robust algorithm that we proposed for solving the nonlinear complementarity problem in an earlier article. In this extended version of NE/SQP, instead of exactly solving the quadratic program subproblems, approximate solutions are generated via an inexact rule.Under a proper choice for this rule, this inexact method is shown to inherit the same convergence properties of the original NE/SQP method. In addition to developing the convergence theory for the inexact method, we also present numerical results of the algorithm tested on two problems of varying size.  相似文献   

16.
In this paper,a new globally convergent algorithm for nonlinear optimization prablems with equality and inequality constraints is presented. The new algorithm is of SQP type which determines a search direction by solving a quadratic programming subproblem per itera-tion. Some revisions on the quadratic programming subproblem have been made in such a way that the associated constraint region is nonempty for each point x generated by the algorithm, i. e. , the subproblems always have optimal solutions. The new algorithm has two important properties. The computation of revision parameter for guaranteeing the consistency of quadratic sub-problem and the computation of the second order correction step for superlinear convergence use the same inverse of a matrix per iteration, so the computation amount of the new algorithm will not be increased much more than other SQP type algorithms; Another is that the new algorithm can give automatically a feasible point as a starting point for the quadratic subproblems pe  相似文献   

17.
18.
A new sequential quadratic programming (SQP) method for nonlinear inequality constrained optimization is proposed. The aim of this paper is to promote global convergence for SQP methods using a flexible step acceptance strategy which combines merit functions and filter techniques. Global convergence is proved under some reasonable assumptions and preliminary numerical results are reported.  相似文献   

19.
简金宝 《数学学报》2004,47(4):781-792
本文讨论无严格互补性的非线性不等式约束最优化问题,建立了一个新的序列线性方程组算法。算法每次迭代只需解一个线性方程组或计算一次广义梯度投影,并不要求Lagrange函数的近似Hessian阵正定。在较弱的假设下,证明了算法的整体收敛性、强收敛性、超线性收敛性及二次收敛速度。还对算法进行了有效的数值试验。  相似文献   

20.
One of the most interesting topics related to sequential quadratic programming algorithms is how to guarantee the consistence of all quadratic programming subproblems. In this decade, much work trying to change the form of constraints to obtain the consistence of the subproblems has been done. The method proposed by De O. Pantoja J.F. A. and coworkers solves the consistent problem of SQP method, and is the best to the authors’ knowledge. However, the scale and complexity of the subproblems in De O. Pantoja’s work will be increased greatly since all equality constraints have to be changed into absolute form. A new sequential quadratic programming type algorithm is presented by means of a special ε-active set scheme and a special penalty function. Subproblems of the new algorithm are all consistent, and the form of constraints of the subproblems is as simple as one of the general SQP type algorithms. It can be proved that the new method keeps global convergence and Local superlinear convergence. Project partly supported by the National Natural Science Foundation of China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号