首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
In this paper we give a group classification for a dissipation-modified Korteweg-de Vries equation by means of the Lie method of the infinitesimals. We prove that, by using the nonclassical method, we get several new solutions which are unobtainable by Lie classical symmetries. We obtain nonclassical symmetries that reduce the dissipation-modified Korteweg-de Vries equation to ordinary equations with the Painlevé property. These solutions have not been derived elsewhere by the singular manifold method.  相似文献   

2.
We investigate and concentrate on new infinitesimal generators of Lie symmetries for an extended (2+ 1)-dimensional Calogero-Bogoyavlenskii-Schif (eCBS) equation using the commutator table which results in a system of nonlinear ordinary differential equations (ODEs) which can be manually solved. Through two stages of Lie symmetry reductions, the eCBS equation is reduced to non-solvable nonlinear ODEs using different combinations of optimal Lie vectors. Using the integration method and the Riccati and Bernoulli equation methods, we investigate new analytical solutions to those ODEs. Back substituting to the original variables generates new solutions to the eCBS equation. These results are simulated through three- and two-dimensional plots.  相似文献   

3.
In this paper, the nonlocal symmetries and exact interaction solutions of the variable coefficient Korteweg–de Vries (KdV) equation are studied. With the help of pseudo-potential, we construct the high order nonlocal symmetries of the time-dependent coefficient KdV equation for the first time. In order to construct the new exact interaction solutions, two auxiliary variables are introduced, which can transform nonlocal symmetries into Lie point symmetries. Furthermore, using the Lie point symmetries of the closed system, some exact interaction solutions are obtained. For some interesting solutions, such as the soliton–cnoidal wave solutions are discussed in detail, and the corresponding 2D and 3D figures are given to illustrate their dynamic behavior.  相似文献   

4.
Lie symmetry group method is applied to study the affine heat equation for surface. Its symmetry groups and corresponding optimal systems are determined, and group-invariant solutions associated to the symmetries are obtained and classified.  相似文献   

5.
Exact solutions of KdV equation with time-dependent coefficients   总被引:1,自引:0,他引:1  
In this paper, we study the Korteweg-de Vries (KdV) equation having time dependent coefficients from the Lie symmetry point of view. We obtain Lie point symmetries admitted by the equation for various forms for the time-dependent coefficients. We use the symmetries to construct the group-invariant solutions for each of the cases of the arbitrary coefficients. Subsequently, the 1-soliton solution is obtained by the aid of solitary wave ansatz method. It is observed that the soliton solution will exist provided that these time-dependent coefficients are all Riemann integrable.  相似文献   

6.
We show that first-order approximate symmetries of a class of nonlinear wave equations contain Lie symmetries as particular cases. Then we present a new approach to find series solutions of the nonlinear wave equation which cannot be obtained by the standard Lie symmetry and approximate symmetry methods.  相似文献   

7.
In this paper, using the standard truncated Painlevé analysis, the Schwartzian equation of (2+1)-dimensional generalized variable coefficient shallow water wave (SWW) equation is obtained. With the help of Lax pairs, nonlocal symmetries of the SWW equation are constructed which be localized by a complicated calculation process. Furthermore, using the Lie point symmetries of the closed system and Schwartzian equation, some exact interaction solutions are obtained, such as soliton–cnoidal wave solutions. Corresponding 2D and 3D figures are placed to illustrate dynamic behavior of the generalized variable coefficient SWW equation.  相似文献   

8.
In this paper, Lie symmetry method is performed for the Hirota–Ramani (H–R) equation. We will find the symmetry group and optimal systems of Lie subalgebras. Furthermore, preliminary classification of its group invariant solutions, symmetry reduction and nonclassical symmetries are investigated. Finally conservation laws of the H–R equation are presented.  相似文献   

9.
In this paper,we applied the Painlevé property test on Krook‐Wu model of the nonlinear Boltzmann equation (p = 1). As a result, by using Bäcklund transformation, we obtained three solutions two of them were known earlier, while the third one is new and more general, we have also two reductions one of them is Abel's equation. Also, Lie‐group method is applied to the (p + 1)th Boltzmann equation. The complete Lie algebra of infinitesimal symmetries is established. Three nonequivalent sub‐algebraic of the complete Lie algebra are used to investigate similarity solutions and similarity reductions in the form of nonlinear ordinary equations for (p + 1)th Boltzmann equation; we obtained two general solutions for (p + 1)th Boltzmann equation and new solutions for Krook‐Wu model of Boltzmann equation (p = 1). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
This paper studies the modified Korteweg–de Vries equation with time variable coefficients of the damping and dispersion using Lie symmetry methods. We carry out Lie group classification with respect to the time-dependent coefficients. Lie point symmetries admitted by the mKdV equation for various forms for the time variable coefficients are obtained. The optimal system of one-dimensional subalgebras of the Lie symmetry algebras are determined. These are then used to determine exact group-invariant solutions, including soliton solutions, and symmetry reductions for some special forms of the equations.  相似文献   

11.
In this paper, the Lie symmetry analysis and group classifications are performed for two variable-coefficient equations, the hanging chain equation and the bond pricing equation. The symmetries for the two equations are obtained, the exact explicit solutions generated from the similarity reductions are presented. Moreover, the exact analytic solutions are considered by the power series method.  相似文献   

12.
We show that the Benjamin–Bona–Mahoney (BBM) equation with power law nonlinearity can be transformed by a point transformation to the combined KdV–mKdV equation, that is also known as the Gardner equation. We then study the combined KdV–mKdV equation from the Lie group-theoretic point of view. The Lie point symmetry generators of the combined KdV–mKdV equation are derived. We obtain symmetry reduction and a number of exact group-invariant solutions for the underlying equation using the Lie point symmetries of the equation. The conserved densities are also calculated for the BBM equation with dual nonlinearity by using the multiplier approach. Finally, the conserved quantities are computed using the one-soliton solution.  相似文献   

13.
The Lie symmetries of nonlinear diffusion equations with convection term are completely described. The Lie ansatzes and exact solutions of a certain nonlinear generalization of the Murray equation are constructed. An example of the family of non-Lie solutions of the Murray equation is given.  相似文献   

14.
In the present paper Lie symmetry group method is applied to find new exact invariant solutions for Klein–Gordon–Fock equation with central symmetry. The found invariant solutions are important for testing finite-difference computational schemes of various boundary value problems of Klein–Gordon–Fock equation with central symmetry. The classical admitted symmetries of the equation are found. The infinitesimal symmetries of the equation are used to find the Riemann function constructively.  相似文献   

15.
Symmetry analysis is a powerful tool that enables the user to construct exact solutions of a given differential equation in a fairly systematic way. For this reason, the Lie point symmetry groups of most well-known differential equations have been catalogued. It is widely believed that the set of symmetries of an initial-value problem (or boundary-value problem) is a subset of the set of symmetries of the differential equation. The current paper demonstrates that this is untrue; indeed, an initial-value problem may have no symmetries in common with the underlying differential equation. The paper also introduces a constructive method for obtaining symmetries of a particular class of initial-value problems.  相似文献   

16.
In this paper, we make a full analysis of a family of Boussinesq equations which include nonlinear dispersion by using the classical Lie method of infinitesimals. We consider travelling wave reductions and we present some explicit solutions: solitons and compactons.For this family, we derive nonclassical and potential symmetries. We prove that the nonclassical method applied to these equations leads to new symmetries, which cannot be obtained by Lie classical method. We write the equations in a conserved form and we obtain a new class of nonlocal symmetries. We also obtain some Type-II hidden symmetries of a Boussinesq equation.  相似文献   

17.
We analyze the Black‐Scholes model with time‐dependent parameters, and it is governed by a parabolic partial differential equation (PDE). First, we compute the Lie symmetries of the Black‐Scholes model with time‐dependent parameters. It admits 6 plus infinite many Lie symmetries, and thus, it can be reduced to the classical heat equation. We use the invariant criteria for a scalar linear (1+1) parabolic PDE and obtain 2 sets of equivalence transformations. With the aid of these equivalence transformations, the Black‐Scholes model with time‐dependent parameters transforms to the classical heat equation. Moreover, the functional forms of the time‐dependent parameters in the PDE are determined via this method. Then we use the equivalence transformations and known solutions of the heat equation to establish a number of exact solutions for the Black‐Scholes model with time‐dependent parameters.  相似文献   

18.
This work presents a geometrical formulation of the Clairin theory of conditional symmetries for higher-order systems of partial differential equations (PDEs). We devise methods for obtaining Lie algebras of conditional symmetries from known conditional symmetries, and unnecessary previous assumptions of the theory are removed. As a consequence, new insights into other types of conditional symmetries arise. We then apply the so-called PDE Lie systems to the derivation and analysis of Lie algebras of conditional symmetries. In particular, we develop a method for obtaining solutions of a higher-order system of PDEs via the solutions and geometric properties of a PDE Lie system, whose form gives a Lie algebra of conditional symmetries of the Clairin type. Our methods are illustrated with physically relevant examples such as nonlinear wave equations, the Gauss–Codazzi equations for minimal soliton surfaces, and generalised Liouville equations.  相似文献   

19.
M. S. Bruzón  M. L. Gandarias 《PAMM》2008,8(1):10587-10588
We apply the Lie–group formalism to deduce symmetries of a generalized double dispersion equation. We derive the ordinary differential equation to which the equation is reduced. We obtain exact solutions which can be expressed by various single and combine nondegenerative Jacobi elliptic function solutions and their degenerative solutions. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
研究了一类四阶偏微分方程的李对称,构造了方程所容许的李对称的优化系统,进行了对称约化,得到了精确解.进一步,基于幂级数理论,得到了这类四阶偏微分方程的幂级数解.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号