首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we give a group classification for a dissipation-modified Korteweg-de Vries equation by means of the Lie method of the infinitesimals. We prove that, by using the nonclassical method, we get several new solutions which are unobtainable by Lie classical symmetries. We obtain nonclassical symmetries that reduce the dissipation-modified Korteweg-de Vries equation to ordinary equations with the Painlevé property. These solutions have not been derived elsewhere by the singular manifold method.  相似文献   

2.
In this work, we study a Boussinesq equation with a strong damping term from the point of view of the Lie theory. We derive the classical Lie symmetries admitted by the equation as well as the reduced ordinary differential equations. Some nontrivial conservation laws are derived by using the multipliers method. Taking into account the relationship between symmetries and conservation laws and applying the double reduction method, we obtain a direct reduction of order of the ordinary differential equations and in particular a kink solution.  相似文献   

3.
In Phys. D 78 (1994) 124, we have found that iterations of the nonclassical symmetries method give rise to new nonlinear equations, which inherit the Lie point symmetry algebra of the given equation. In the present paper, we show that special solutions of the right-order heir-equation correspond to classical and nonclassical symmetries of the original equations. An infinite number of nonlinear equations which possess nonclassical symmetries are derived.  相似文献   

4.
Nonlinear generalizations of integrable equations in one dimension, such as the Korteweg–de Vries and Boussinesq equations with p-power nonlinearities, arise in many physical applications and are interesting from the analytic standpoint because of their critical behavior. We study analogous nonlinear p-power generalizations of the integrable Kadomtsev–Petviashvili and Boussinesq equations in two dimensions. For all p ≠ 0, we present a Hamiltonian formulation of these two generalized equations. We derive all Lie symmetries including those that exist for special powers p ≠ 0. We use Noether’s theorem to obtain conservation laws arising from the variational Lie symmetries. Finally, we obtain explicit line soliton solutions for all powers p > 0 and discuss some of their properties.  相似文献   

5.
Nonclassical symmetry reductions of the Boussinesq equation   总被引:5,自引:0,他引:5  
In this paper we discuss symmetry reductions and exact solutions of the Boussinesq equation using the classical Lie method of infinitesimals, the direct method due to Clarkson and Kruskal and the nonclassical method due to Bluman and Cole. In particular, we compare and contrast the application of these three methods. We discuss the use of symbolic manipulation programs in the implementation of these methods and differential Gröbner bases as a technique for solving the overdetermined systems of equations that arise. The relationship between the direct and nonclassical methods and other ansatz-based methods for deriving exact solutions of partial differential equations are also mentioned. To conclude we describe some of the important open problems in the field of symmetry analysis of differential equations.  相似文献   

6.
We apply the classical Lie method and the nonclassical method to a generalized Ostrovsky equation (GOE) and to the integrable Vakhnenko equation (VE), which Vakhnenko and Parkes proved to be equivalent to the reduced Ostrovsky equation. Using a simple nonlinear ordinary differential equation, we find that for some polynomials of velocity, the GOE has abundant exact solutions expressible in terms of Jacobi elliptic functions and consequently has many solutions in the form of periodic waves, solitary waves, compactons, etc. The nonclassical method applied to the associated potential system for the VE yields solutions that arise from neither nonclassical symmetries of the VE nor potential symmetries. Some of these equations have interesting behavior such as “nonlinear superposition.”  相似文献   

7.
In this paper we consider a class of generalised diffusion equations which are of great interest in mathematical physics. For some of these equations model, fast diffusion nonclassical symmetries are derived. We find the connection between classes of nonclassical symmetries of the equation and of an associated system. These symmetries allow us to increase the number of solutions. Some of these solutions are unobtainable by classical symmetries and exhibit an interesting behaviour.  相似文献   

8.
9.
In this paper, complete group classification of a class of (1+1)-dimensional generalized quasi-linear wave equations is performed by using the Lie-Ovsiannikov method, additional equivalent transformation and furcate split method. Lie reductions of some truly ‘variable coefficient’ wave equations which are singled out from the classification results are investigated. Some classes of exact solutions of these ‘variable coefficient’ wave equations are constructed by means of both the reductions and the additional equivalent transformations. The nonclassical symmetries to the generalized quasi-linear wave equation are also studied. This enabled to obtain some exact solutions of the wave equations which are invariant under certain conditional symmetries.  相似文献   

10.
In this paper we extend the procedure described for Bîlă and Niesen in [Bîlă N, Niesen J. On a new procedure for finding nonclassical symmetries. J Symbol Comp 2004;38:1523–33], to obtain the determining equations of the nonclassical symmetries associated with a partial differential equation system, to a different case. We offer some examples of how our method works. By using this procedure we obtain a new nonclassical symmetry for the 2 + 1-dimensional shallow water wave equation.  相似文献   

11.
In this paper, we consider a class of generalized diffusion equations which are of great interest in mathematical physics. For some of these equations that model fast diffusion, nonclassical and nonclassical potential symmetries are derived. These symmetries allow us to increase the number of solutions. These solutions are unobtainable neither from classical nor from classical potential symmetries. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper we discuss a new approach to the relationship between integrability and symmetries of a nonlinear partial differential equation. The method is based heavily on ideas using both the Painlevé property and the singular manifold analysis, which is of outstanding importance in understanding the concept of integrability of a given partial differential equation. In our examples we show that the solutions of the singular manifold possess Lie point symmetries that correspond precisely to the so-called nonclassical symmetries. We also point out the connection between the singular manifold method and the direct method of Clarkson and Kruskal. Here the singular manifold is a function of its reduced variable. Although the Painlevé property plays an essential role in our approach, our method also holds for equations exhibiting only the conditional Painlevé property. We offer six full examples of how our method works for the six equations, which we believe cover all possible cases.  相似文献   

13.
In this paper we present some new applications of Lie symmetry analysis to problems in stochastic calculus. The major focus is on using Lie symmetries of parabolic PDEs to obtain fundamental solutions and transition densities. The method we use relies upon the fact that Lie symmetries can be integrated with respect to the group parameter. We obtain new results which show that for PDEs with nontrivial Lie symmetry algebras, the Lie symmetries naturally yield Fourier and Laplace transforms of fundamental solutions, and we derive explicit formulas for such transforms in terms of the coefficients of the PDE.  相似文献   

14.
We study the generalized fifth order KdV equation using group methods and conservation laws. All of the geometric vector fields of the special fifth order KdV equation are presented. By using the nonclassical Lie group method, it is show that this equation does not admit nonclassical type symmetries. Then, on the basis of the optimal system, the symmetry reductions and exact solutions to this equation are constructed. For some special cases, we obtain additional nontrivial conservation laws and scaling symmetries.  相似文献   

15.
We study the Krichever-Novikov equation from the standpoint of the theory of symmetry reductions in partial differential equations. We obtain a Lie group classification. Moreover, we obtain some exact solutions, and we apply the nonclassical method.  相似文献   

16.
The Type-II hidden symmetries are extra symmetries in addition to the inherited symmetries of the differential equations when the number of independent and dependent variables is reduced by a Lie point symmetry. In [B. Abraham-Shrauner, K.S. Govinder, Provenance of Type II hidden symmetries from nonlinear partial differential equations, J. Nonlinear Math. Phys. 13 (2006) 612-622] Abraham-Shrauner and Govinder have analyzed the provenance of this kind of symmetries and they developed two methods for determining the source of these hidden symmetries. The Lie point symmetries of a model equation and the two-dimensional Burgers' equation and their descendants were used to identify the hidden symmetries. In this paper we analyze the connection between one of their methods and the weak symmetries of the partial differential equation in order to determine the source of these hidden symmetries. We have considered the same models presented in [B. Abraham-Shrauner, K.S. Govinder, Provenance of Type II hidden symmetries from nonlinear partial differential equations, J. Nonlinear Math. Phys. 13 (2006) 612-622], as well as the WDVV equations of associativity in two-dimensional topological field theory which reduces, in the case of three fields, to a single third order equation of Monge-Ampère type. We have also studied a second order linear partial differential equation in which the number of independent variables cannot be reduced by using Lie symmetries, however when is reduced by using nonclassical symmetries the reduced partial differential equation gains Lie symmetries.  相似文献   

17.
胡贝贝  张玲 《数学杂志》2016,36(3):584-590
本文研究了超经典Boussinesq系统.利用已有的超经典Boussinesq方程族及其超哈密顿结构,构造了带自相容源的超经典Boussinesq方程族,并通过引入变量F和G,获得了超经典Boussinesq方程族的守恒律.  相似文献   

18.
In this paper we consider the variable coefficient equation ut=b(t)uux+a(t)uxx which among other applications has considerable interest in nonlinear acoustics. We present transformation properties of this generalised equation. In particular, we classify the Lie classical symmetries, the nonclassical symmetries, the potential symmetries, point and potential form preserving transformations. Finally, using these transformations we give examples of exact solutions.  相似文献   

19.
Theoretical and Mathematical Physics - By including spectral functions, we obtain nonlocal symmetries equivalent to Lie point symmetries of the corresponding extended systems for the Boussinesq...  相似文献   

20.
利用李群$M_nC$的一个子群我们引入一个线性非等谱问题,该问题的相容性条件可导出演化方程的一个非等谱可积族,该可积族可约化成一个广义非等谱可积族.这个广义非等谱可积族可进一步约化成在物理学中具有重要应用的标准非线性薛定谔方程和KdV方程.基于此,我们讨论在广义非等谱可积族等谱条件下的一个广义AKNS族$u_t=K_m(u)$的$K$对称和$\tau$对称.此外,我们还考虑非等谱AKNS族$u_t=\tau_{N+1}^l$的$K$对称和$\tau$对称.最后,我们得到这两个可积族的对称李代数,并给出这些对称和李代数的一些应用,即生成了一些变换李群和约化方程的无穷小算子.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号