首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Two tuberculosis (TB) models with incomplete treatment are investigated. It is assumed that the treated individuals may enter either the latent compartment due to the remainder of Mycobacterium tuberculosis or the infectious compartment due to the treatment failure. The first model is a simple one with treatment failure reflecting the current TB treatment fact in most countries with high tuberculosis incidence. The second model refines the simple one by dividing the latent compartment into slow and fast two kinds of progresses. This improvement can be used to describe the case that the latent TB individuals have been infected with some other chronic diseases (such as HIV and diabetes) which may weaken the immunity of infected individuals and shorten the latent period of TB. Both of the two models assume mass action incidence and exponential distributions of transfers between different compartments. The basic reproduction numbers of the two models are derived and their intuitive epidemiological interpretations are given. The global dynamics of two models are all proved by using Liapunov functions. At last, some strategies to control the spread of tuberculosis are discussed.  相似文献   

2.
讨论了带有脉冲免疫和传染年龄的传染病模型.传染类的恢复率是传染年龄的函数,当染病再生数小于1时,文章得到无病周期解是全局吸引的.如果总人口规模变化,也可得到类似的结论.最后,提出了带有脉冲免疫和传染年龄传染病模型待解决的问题.  相似文献   

3.
We introduce a new tuberculosis (TB) mathematical model, with 25 state-space variables where 15 are evolution disease states (EDSs), which generalises previous models and takes into account the (seasonal) flux of populations between a high incidence TB country (A) and a host country (B) with low TB incidence, where (B) is divided into a community (G) with high percentage of people from (A) plus the rest of the population (C). Contrary to some beliefs, related to the fact that agglomerations of individuals increase proportionally to the disease spread, analysis of the model shows that the existence of semi-closed communities are beneficial for the TB control from a global viewpoint. The model and techniques proposed are applied to a case-study with concrete parameters, which model the situation of Angola (A) and Portugal (B), in order to show its relevance and meaningfulness. Simulations show that variations of the transmission coefficient on the origin country has a big influence on the number of infected (and infectious) individuals on the community and the host country. Moreover, there is an optimal ratio for the distribution of individuals in (C) versus (G), which minimizes the reproduction number \(R_0\). Such value does not give the minimal total number of infected individuals in all (B), since such is attained when the community (G) is completely isolated (theoretical scenario). Sensitivity analysis and curve fitting on \(R_0\) and on EDSs are pursuit in order to understand the TB effects in the global statistics, by measuring the variability of the relevant parameters. We also show that the TB transmission rate \(\beta \) does not act linearly on \(R_0\), as it is common in compartment models where system feedback or group interaction do not occur. Further, we find the most important parameters for the increase of each EDS.  相似文献   

4.
An HIV/AIDS epidemic model with different latent stages and treatment is constructed. The model allows for the latent individuals to have the slow and fast latent compartments. Mathematical analyses establish that the global dynamics of the spread of the HIV infectious disease are determined by the basic reproduction number under some conditions. If R0 < 1, the disease free equilibrium is globally asymptotically stable, and if R0 > 1, the endemic equilibrium is globally asymptotically stable for a special case. Some numerical simulations are also carried out to confirm the analytical results.  相似文献   

5.
In this paper,we formulated an age-dependent model for the transmission dynamics of HBV with vaccination. The class of acutely infectious individuals,asymptomatic carrier of host population is stratified by age. Mathematically, we established that basic reproduction number can govern the global stability of equilibria. Biologically, we verify the impacts of the asymptomatic carriers and the effectiveness of vaccination on the disease transmission through numerical simulation. Our results indicated that the more number of infectious individuals specific to frequently progressed to asymptomatic carriers, the more likely the disease can be eradicated by continuous vaccination strategies.  相似文献   

6.
一类带有非线性传染率的SEIR传染病模型的全局分析   总被引:1,自引:0,他引:1  
通过假设被传染的易感者一部分经过一段潜伏期后才具有传染性,而另一部分被感染的易感者直接成为传染者,建立了一类带有非线性传染率的SEIR传染病模型,得到了确定疾病是否成为地方病的基本再生数以及无病平衡点和地方病平衡点的全局稳定性.  相似文献   

7.
The limitation of contact between susceptible and infected individuals plays an important role in decreasing the transmission of infectious diseases. Prevention and control strategies contribute to minimizing the transmission rate. In this paper, we propose SIR epidemic model with delayed control strategies, in which delay describes the response and effect time. We study the dynamic properties of the epidemic model from three aspects: steady states, stability and bifurcation. By eliminating the existence of limit cycles, we establish the global stability of the endemic equilibrium, when the delay is ignored. Further, we find that the delayed effect on the infection rate does not affect the stability of the disease-free equilibrium, but it can destabilize the endemic equilibrium and bring Hopf bifurcation. Theoretical results show that the prevention and control strategies can effectively reduce the final number of infected individuals in the population. Numerical results corroborate the theoretical ones.  相似文献   

8.
In this paper, we propose and analyze a tuberculosis (TB) model with exogenous re-infection. We assume that treated individual may be again infected by infectious individual. The model exhibits two bifurcations viz. transcritical bifurcation when the basic reproductive number R 0?=?1 and backward bifurcation where the disease transmission rate β plays as control parameter. The persistent of the model and, the local and global stability criteria of disease-free and endemic equilibria are discussed. By carrying out bifurcation analysis, it is shown that the model exhibits the bistability and undergoes the Hopf bifurcation when immunological memory is everlasting i.e. when σ?=?0. Lastly, some simulations are given to verify our analytical results.  相似文献   

9.
In this paper, two susceptible‐infected‐susceptible epidemic models with varying total population size, continuous vaccination, and state‐dependent pulse vaccination are formulated to describe the transmission of infectious diseases, such as diphtheria, measles, rubella, pertussis, and so on. The first model incorporates the proportion of infected individuals in population as monitoring threshold value; we analytically show the existence and orbital asymptotical stability of positive order‐1 periodic solution for this control model. The other model determines control strategy by monitoring the proportion of susceptible individuals in population; we also investigate the existence and global orbital asymptotical stability of the disease‐free periodic solution. Theoretical results imply that the disease dies out in the second case. Finally, using realistic parameter values, we carry out some numerical simulations to illustrate the main theoretical results and the feasibility of state‐dependent pulse control strategy.  相似文献   

10.
该文基于经典的SEIR传染病模型建立了一类含有基础疾病历史人群的新冠肺炎传播模型,得到了其传播的基本再生数,确定了模型平衡点的存在性,并通过构造Lyapunov函数和利用LaSalle不变性原理论证了平衡点的全局稳定性,用数值模拟对所得理论研究结果进行了有效验证.同时,讨论了由无基础病向有基础病转化的速率系数对疾病传播的影响,发现不考虑基础病的数学模型会低估疾病传播的基本再生数和感染规模,数值模拟也显示了由无基础病向有基础病转化的速率系数对感染者人数峰值的影响.  相似文献   

11.
An SEI epidemic model with constant recruitment and infectious force in the latent period is investigated. This model describes the transmission of diseases such as SARS. The behavior of positive solutions to a reaction–diffusion system with homogeneous Neumann boundary conditions are investigated. Sufficient conditions for the local and global asymptotical stability are given by linearization and by the method of upper and lower solutions and its associated monotone iterations. Our result shows that the disease-free equilibrium is globally asymptotically stable if the contact rate is small.  相似文献   

12.
In this paper, an SIS model for bacterial infectious diseases, like tuberculosis, typhoid, etc., caused by direct contact of susceptibles with infectives as well as by bacteria is proposed and analyzed. Here the demography of the human population is constant immigration and the cumulative rate of the environmental discharges is a function of total human population. Further this model is extended to the model for socially structured population (rich and poor) where poor people work as service provider in the houses of rich people but do not settle in the habitat of rich people. It is assumed that bacteria population does not survive in the clean environment of rich people and only affects the population in the degraded environment of the poor class. The stability of the equilibria is studied by using the theory of differential equation and computer simulation. It is concluded that the spread of the infectious disease increases when the growth of bacteria caused by conducive environmental discharge due to human sources increases. Also the spread of the infectious disease in rich class increases due to the interaction with service providers, who are living in relatively poor environmental condition, suggesting the need to keep our environment clean all around.  相似文献   

13.
This study explores the influence of epidemics by numerical simulations and analytical techniques. Pulse vaccination is an effective strategy for the treatment of epidemics. Usually, an infectious disease is discovered after the latent period, H1N1 for instance. The vaccinees (susceptible individuals who have started the vaccination process) are different from both susceptible and recovered individuals. So we put forward a SVEIRS epidemic model with two time delays and nonlinear incidence rate, and analyze the dynamical behavior of the model under pulse vaccination. The global attractivity of ‘infection-free’ periodic solution and the existence, uniqueness, permanence of the endemic periodic solution are investigated. We obtain sufficient condition for the permanence of the epidemic model with pulse vaccination. The main feature of this study is to introduce two discrete time delays and impulse into SVEIRS epidemic model and to give pulse vaccination strategies.  相似文献   

14.
In this paper, a mathematical model describing the transmission dynamics of an infectious disease with an exposed (latent) period and waning vaccine-induced immunity is investigated. The basic reproduction number is found by applying the method of the next generation matrix. It is shown that the global dynamics of the model is completely determined by the basic reproduction number. By means of appropriate Lyapunov functionals and LaSalle’s invariance principle, it is proven that if the basic reproduction number is less than or equal to unity, the disease-free equilibrium is globally asymptotically stable and the disease fades out; and if the basic reproduction number is greater than unity, the endemic equilibrium is globally asymptotically stable and therefore the disease becomes endemic.  相似文献   

15.
16.
Global behavior and permanence of SIRS epidemic model with time delay   总被引:1,自引:0,他引:1  
In this paper an autonomous SIRS epidemic model with time delay is studied. The basic reproductive number R0 is obtained which determines whether the disease is extinct or not. When the basic reproductive number is greater than 1, it is proved that the disease is permanent in the population, and explicit formula are obtained by which the eventual lower bound of the fraction of infectious individuals can be computed. Throughout the total paper, we mainly use the technique of Lyapunov functional to establish the global stability of the infection-free equilibrium and the local stability of the endemic equilibrium but need another sufficient condition.  相似文献   

17.
This paper considers an SEIS epidemic model with infectious force in the latent period and a general population-size dependent contact rate.A threshold parameter R is identified.If R≤1,the disease-free equilibrium O is globally stable.IfR>1,there is a unique endemic equilibrium and O is unstable.For two important special cases of bilinear and standard incidence,sufficient conditions for the global stability of this endemic equilibrium are given.The same qualitative results are obtained provided the threshold is more than unity for the corresponding SEIS model with no infectious force in the latent period.Some existing results are extended and improved.  相似文献   

18.
研究了一类潜伏期和感染期均传染的SEIQR模型的全局稳定性,找到疾病绝灭和持续生存的阈值——基本再生数R0,证明了无病平衡点和地方病平衡点的存在性和全局渐近稳定性,揭示了隔离对疾病控制的积极作用。  相似文献   

19.
Tuberculosis is a global epidemic disease and almost two billion people across the globe are infected with the tuberculosis bacilli. Many countries like China, Europe and United States has achieved dramatic decrease in TB mortality rate but country like India is still struggling hard to control this epidemic. Jharkhand one of the states of India is highly epidemic toward this disease. We propose a mathematical model to understand the spread of tuberculosis disease in human population for both pulmonary and drug-resistant subjects. A number of new vaccines are currently in development. Keeping in mind, vaccination as one of the treatment for TB patients may be infant or adult in future; an assumption for the transfer of proportion of susceptible population to the vaccination class is considered. Quarantine class is also considered in our epidemic model for multidrug-resistant patients, and it is observed that it may play a vital role for controlling the disease. Threshold and equilibria are obtained and the condition for epidemic under different conditions of threshold is established. Real parametric values of the Jharkhand state are taken into account to simulate the system developed, and the results so obtained validate our analytical results.  相似文献   

20.
In this paper, we consider an SIS epidemic reaction–diffusion model with spontaneous infection and logistic source in a heterogeneous environment. The uniform bounds of solutions are established, and the global asymptotic stability of the constant endemic equilibrium is discussed in the case of homogeneous environment. This paper aims to analyze the asymptotic profile of endemic equilibria (when it exists) as the diffusion rate of the susceptible or infected population is small or large. Our results on this new model reveal that varying total population and spontaneous infection can enhance persistence of infectious disease, which may provide some implications on disease control and prediction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号