首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
A susceptible‐infected‐susceptible (SIS) epidemic reaction‐diffusion model with saturated incidence rate and spontaneous infection is considered. We establish the existence of endemic equilibrium by using a fixed‐point theorem. The global asymptotic stability of the constant endemic equilibrium is discussed in the case of homogeneous environment. We mainly investigate the effects of diffusion and saturation on asymptotic profiles of the endemic equilibrium. When the saturated incidence rate tends to infinity, the susceptible and infective distributes in the habitat in a nonhomogeneous way; this result is in strong contrast with the case of no spontaneous infection, where the endemic equilibrium tends to the disease free equilibrium. Our analysis shows that the spontaneous infection can enhance the persistence of an infectious disease and may provide some useful implications on disease control.  相似文献   

2.
To capture the impact of spatial heterogeneity of environment and movement of individuals on the persistence and extinction of a disease, Allen et al. in [L.J.S. Allen, B.M. Bolker, Y. Lou, A.L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Contin. Dyn. Syst. Ser. A 21 (1) (2008) 1-20] proposed a spatial SIS (susceptible-infected-susceptible) reaction-diffusion model, and studied the existence, uniqueness and particularly the asymptotic behavior of the endemic equilibrium as the diffusion rate of the susceptible individuals goes to zero in the case where a so-called low-risk subhabitat is created. In this work, we shall provide further understanding of the impacts of large and small diffusion rates of the susceptible and infected population on the persistence and extinction of the disease, which leads us to determine the asymptotic behaviors of the endemic equilibrium when the diffusion rate of either the susceptible or infected population approaches to infinity or zero in the remaining cases. Consequently, our results reveal that, in order to eliminate the infected population at least in low-risk area, it is necessary that one will have to create a low-risk subhabitat and reduce at least one of the diffusion rates to zero. In this case, our results also show that different strategies of controlling the diffusion rates of individuals may lead to very different spatial distributions of the population; moreover, once the spatial environment is modified to include a low-risk subhabitat, the optimal strategy of eradicating the epidemic disease is to restrict the diffusion rate of the susceptible individuals rather than that of the infected ones.  相似文献   

3.
In this paper, we deal with an SIRS reaction–diffusion epidemic model with saturation infection mechanism. Based on the uniform boundedness of the parabolic system, we investigate the extinction and persistence of the infectious disease in terms of the basic reproduction number. To better investigate the effects of infection mechanism and individual diffusion, we further analyze the asymptotic profiles of the endemic equilibrium for small or large motility rate and large saturation rate. In particular it is shown that large saturation may cause the elimination of disease. Our study may provide some significant useful insight on disease control and prevention.  相似文献   

4.
Global dynamics of SIS models with transport-related infection   总被引:1,自引:0,他引:1  
To understand the effect of transport-related infection on disease spread, an epidemic model for several regions which are connected by transportation of individuals has been proposed by Cui, Takeuchi and Saito [J. Cui, Y. Takeuchi, Y. Saito, Spreading disease with transport-related infection, J. Theoret. Biol. 239 (2006) 376-390]. Transportation among regions is one of the main factors which affects the outbreak of diseases. The purpose of this paper is the further study of the local asymptotic stability of the endemic equilibrium and the global dynamics of the system. Sufficient conditions are established for global asymptotic stability of the endemic equilibrium. Permanence is also discussed. It is shown that the disease is endemic in the sense of permanence if and only if the endemic equilibrium exists. This implies that transport-related infection on disease can make the disease endemic even if all the isolated regions are disease free.  相似文献   

5.
具有免疫接种且总人口规模变化的SIR传染病模型的稳定性   总被引:4,自引:0,他引:4  
讨论一类具有预防免疫接种且有效接触率依赖于总人口的SIR传染病模型,给出了决定疾病灭绝和持续生存的基本再生数σ的表达式,在一定条件下证明了疾病消除平衡点的全局稳定性,得到了唯一地方病平衡点的存在性和局部渐近稳定性条件.最后研究了具有双线性传染率和标准传染率的两个具体模型,并证明了当σ>1时该模型地方病平衡点的全局渐近稳定性.  相似文献   

6.
Autonomous and nonautonomous hepatitis B virus infection models in patchy environment are investigated respectively to illustrate the influences of population migration and almost periodicity for infection rate on the spread of hepatitis B virus. The basic reproduction number is determined and asymptotic stabilities of disease-free and endemic equilibria are established in case of autonomous system. Moreover, in the nonautonomous system case, existence and global attractivity of almost periodic solution for this system are studied. Finally, feasibility of main theoretical results is showed with the aid of numerical examples for model with two patches.  相似文献   

7.
Approximating the time to extinction of infection is an important problem in infection modelling. A variety of different approaches have been proposed in the literature. We study the performance of a number of such methods, and characterise their performance in terms of simplicity, accuracy, and generality. To this end, we consider first the classic stochastic susceptible-infected-susceptible (SIS) model, and then a multi-dimensional generalisation of this which allows for Erlang distributed infectious periods. We find that (i) for a below-threshold infection initiated by a small number of infected individuals, approximation via a linear branching process works well; (ii) for an above-threshold infection initiated at endemic equilibrium, methods from Hamiltonian statistical mechanics yield correct asymptotic behaviour as population size becomes large; (iii) the widely-used Ornstein-Uhlenbeck diffusion approximation gives a very poor approximation, but may retain some value for qualitative comparisons in certain cases; (iv) a more detailed diffusion approximation can give good numerical approximation in certain circumstances, but does not provide correct large population asymptotic behaviour, and cannot be relied upon without some form of external validation (eg simulation studies).  相似文献   

8.
根据传染病动力学原理,考虑人口在两斑块上流动且具有非线性传染率,建立了一类基于两斑块和人口流动的SIR传染病模型.利用常微分方程定性与稳定性方法,分析了模型永久持续性和非负平衡点的存在性,通过构造适当的Lyapunov函数和极限系统理论,获得无病平衡点和地方病平衡点全局渐近稳定的充分条件.研究结果表明:基本再生数是决定疾病流行与否的阈值,当基本再生数小于等于1时,感染者逐渐消失,病毒趋于灭绝;当基本再生数大于1并满足永久持续条件时,感染者持续存在且病毒持续流行并将成为一种地方病.  相似文献   

9.
In this paper, we propose a host‐vector model for malaria transmission by incorporating infection age in the infected host population and nonlinear incidence for transmission from infectious vectors to susceptible hosts. One novelty of the model is that the recovered hosts only have temporary immunity and another is that successfully recovered infected hosts may become susceptible immediately. Firstly, the existence and local stability of equilibria is studied. Secondly, rigorous mathematical analyses on technical materials and necessary arguments, including asymptotic smoothness and uniform persistence of the system, are given. Thirdly, by applying the fluctuation lemma and the approach of Lyapunov functionals, the threshold dynamics of the model for a special case were established. Roughly speaking, the disease‐free equilibrium is globally asymptotically stable when the basic reproduction number is less than one and otherwise the endemic equilibrium is globally asymptotically stable when no reinfection occurs. It is shown that the infection age and nonlinear incidence not only impact on the basic reproduction number but also could affect the values of the endemic steady state. Numerical simulations were performed to support the theoretical results.  相似文献   

10.
In this paper, we propose and study an SIRS epidemic model that incorporates: a generalized incidence rate function describing mechanisms of the disease transmission; a preventive vaccination in the susceptible individuals; and different treatment control strategies depending on the infective population. We provide rigorous mathematical results combined with numerical simulations of the proposed model including: treatment control strategies can determine whether there is an endemic outbreak or not and the number of endemic equilibrium during endemic outbreaks, in addition to the effects of the basic reproduction number; the large value of the preventive vaccination rate can reduce or control the spread of disease; and the large value of the psychological or inhibitory effects in the incidence rate function can decrease the infective population. Some of our interesting findings are that the treatment strategies incorporated in our SIRS model are responsible for backward or forward bifurcations and multiple endemic equilibria; and the infective population decreases with respect to the maximal capacity of treatment. Our results may provide us useful biological insights on population managements for disease that can be modeled through SIRS compartments.  相似文献   

11.
一类SARS传染病自治动力系统的稳定性分析   总被引:1,自引:1,他引:0  
在K-M传染病模型的基础上,进一步考虑易感人群的密度制约以及患病者类的死亡与治愈率等因素,建立了描述SARS传染病的一个新的动力学模型,分析了该模型平衡点的稳定性态.证明了疾病消除平衡点在一定条件下是全局渐进稳定的,而地方病平衡点不是渐近稳定的.得到了该传染病系统在适当条件下为永久持续生存的结果.  相似文献   

12.
In this paper, we investigate the stability of an epidemic model with diffusion and stochastic perturbation. We first show both the local and global stability of the endemic equilibrium of the deterministic epidemic model by analyzing corresponding characteristic equation and Lyapunov function. Second, for the corresponding reaction–diffusion epidemic model, we present the conditions of the globally asymptotical stability of the endemic equilibrium. And we carry out the analytical study for the stochastic model in details and find out the conditions for asymptotic stability of the endemic equilibrium in the mean sense. Furthermore, we perform a series of numerical simulations to illustrate our mathematical findings.  相似文献   

13.
A nonlinear mathematical model is proposed to study the effect of tuberculosis on the spread of HIV infection in a logistically growing human population. The host population is divided into four sub classes of susceptibles, TB infectives, HIV infectives (with or without TB) and that of AIDS patients. The model exhibits four equilibria namely, a disease free, HIV free, TB free and an endemic equilibrium. The model has been studied qualitatively using stability theory of nonlinear differential equations and computer simulation. We have found a threshold parameter R0 which is if less than one, the disease free equilibrium is locally asymptotically stable otherwise for R0>1, at least one of the infections will be present in the population. It is shown that the positive endemic equilibrium is always locally stable but it may become globally stable under certain conditions showing that the disease becomes endemic. It is found that as the number of TB infectives decreases due to recovery, the number of HIV infectives also decreases and endemic equilibrium tends to TB free equilibrium. It is also observed that number of AIDS individuals decreases if TB is not associated with HIV infection. A numerical study of the model is also performed to investigate the influence of certain key parameters on the spread of the disease.  相似文献   

14.
We introduce a non-linear structured population model with diffusion in the state space. Individuals are structured with respect to a continuous variable which represents a pathogen load. The class of uninfected individuals constitutes a special compartment that carries mass; hence the model is equipped with generalized Wentzell (or dynamic) boundary conditions. Our model is intended to describe the spread of infection of a vertically transmitted disease, for e.g., Wolbachia in a mosquito population. Therefore, the (infinite dimensional) non-linearity arises in the recruitment term. First, we establish global existence of solutions and the principle of linearised stability for our model. Then, in our main result, we formulate simple conditions which guarantee the existence of non-trivial steady states of the model. Our method utilises an operator theoretic framework combined with a fixed-point approach. Finally in the last section, we establish a sufficient condition for the local asymptotic stability of the positive steady state.  相似文献   

15.
{\it Wolbachia} are maternally transmitted endosymbiotic bacteria. To investigate the effect of {\it Wolbachia} on the spreading and vanishing of West Nile virus, we construct a reaction-diffusion model associated with the {\it Wolbachia} parameter in a heterogeneous environment, which has nonlinear infectious disease parameters. Based on the spectral radius of next infection operator and the related eigenvalue problem, we present a corresponding explicit expression describing the basic reproduction number. Furthermore, utilizing this number, we not only give out the stability of disease-free equilibrium, but also analyze the uniqueness and globally asymptotic behavior of endemic equilibrium. Our theoretical results and numerical simulations indicate that only if {\it Wolbachia} reach a certain magnitude in mosquitoes, it can be effective in the control of West Nile virus.  相似文献   

16.
This paper presents an asymptotic analysis of a stochastic logistic population model with nonlinear diffusion term. The classical probability method is applied to obtain the criteria of asymptotic behavior for the considered model. The numerical simulations validate the efficiency of the theory analysis.  相似文献   

17.
Cui and Lou (J Differ Equ 261:3305–3343, 2016) proposed a reaction–diffusion–advection SIS epidemic model in heterogeneous environments, and derived interesting results on the stability of the DFE (disease-free equilibrium) and the existence of EE (endemic equilibrium) under various conditions. In this paper, we are interested in the asymptotic profile of the EE (when it exists) in the three cases: (i) large advection; (ii) small diffusion of the susceptible population; (iii) small diffusion of the infected population. We prove that in case (i), the density of both the susceptible and infected populations concentrates only at the downstream behaving like a delta function; in case (ii), the density of the susceptible concentrates only at the downstream behaving like a delta function and the density of the infected vanishes on the entire habitat, and in case (iii), the density of the susceptible is positive while the density of the infected vanishes on the entire habitat. Our results show that in case (ii) and case (iii), the asymptotic profile is essentially different from that in the situation where no advection is present. As a consequence, we can conclude that the impact of advection on the spatial distribution of population densities is significant.  相似文献   

18.
A five‐dimensional ordinary differential equation model describing the transmission of Toxoplamosis gondii disease between human and cat populations is studied in this paper. Self‐diffusion modeling the spatial dynamics of the T. gondii disease is incorporated in the ordinary differential equation model. The normalized version of both models where the unknown functions are the proportions of the susceptible, infected, and controlled individuals in the total population are analyzed. The main results presented herein are that the ODE model undergoes a trans‐critical bifurcation, the system has no periodic orbits inside the positive octant, and the endemic equilibrium is globally asymptotically stable when we restrict the model to inside of the first octant. Furthermore, a local linear stability analysis for the spatially homogeneous equilibrium points of the reaction diffusion model is carried out, and the global stability of both the disease‐free and endemic equilibria are established for the reaction–diffusion system when restricted to inside of the first octant. Finally, numerical simulations are provided to support our theoretical results and to predict some scenarios about the spread of the disease. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, we have considered a nonautonomous dynamical model of diseases that spread by droplet infection and also through direct contact (with a lower risk) with varying total population size and distributed time delay to become infectious. It is assumed that there is a time lag due to incubation period of pathogens, i.e. the development of an infection from the time the pathogen enters the body until signs or symptoms first appear. Here, we have established some sufficient conditions on the permanence and extinction of the disease by using inequality analytical technique. We have obtained the explicit formula of the eventual lower bounds of infected persons. We have introduced some new threshold values. By Lyapunov functional method, we have also obtained some sufficient conditions for global asymptotic stability of this model. Computer simulations are carried out to explain the analytical findings. The aim of the analysis of this model is to trace the parameters of interest for further study, with a view to informing and assisting policy-maker in targeting prevention and treatment resources for maximum effectiveness.  相似文献   

20.
In this paper, we discuss an ordinary differential equation mathematical model for the spread of malaria in human and mosquito population. We suppose the human population to act as a reservoir. Both the species follow a logistic population model. The transmission coefficient or the interaction coefficient of humans is considered to be dependent on the mosquito population. It is seen that as the factors governing the transmission coefficient of humans increase, so does the number of infected humans. Further, it is observed that as the immigration constant increases, it leads to a rise in infected humans, giving an endemic shape to the disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号