首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
在Kelvin粘弹性体模型中引入非局晨应力应变关系,得到了粘弹性体的非局部本构方程,研究了符合该种本构关系的直杆受到轴向拉力作用的应变响应问题.首先通过变换将应变响应的求解问题转化为Volterra积分方程形式,然后采用对称的指数型核函数,利用Neumann级数展开求解了Volterra积分方程,得到了直杆的应变场.数值算例的计算结果显示了直杆受轴向拉力作用后的蠕变过程,当时间趋近无穷大时,计算结果则退化为非局部弹性计算结果.  相似文献   

2.
本文把A.C.Eringen建立的非局部微极连续统的本构理论推广到包括具有隐含的和多重相互作用的非局部性的微极连续统的情形.这里以隐含的和多重相互作用的非局部微极热弹性固体为例说明建立各自本构理论的过程并给出两个相应的有关本构理论的定理.  相似文献   

3.
魏金侠  单锐  刘文  靳飞 《应用数学》2012,25(3):691-696
为了解决二维非线性Volterra积分微分方程的求解问题,本文给出微分变换法.利用该方法将方程中的微分部分和积分部分进行变换,这样简化了原方程,进而得到非线性代数方程组,从而将原问题转换为求解非线性代数方程组的解,使得计算更简便.文中最后数值算例说明了该方法的可行性和有效性.  相似文献   

4.
黄再兴 《应用数学和力学》1999,20(11):1193-1197
证明了在线性非局部弹性力学中能量平衡方程是动量平衡方程的首次积分,论证了在非局部场论中局部化体力残余恒为零。详细推导了线性非局部弹性理论的本构方程,得到了反对称应力存在的新结果。  相似文献   

5.
黄再兴 《应用数学和力学》1999,20(11):1193-1197
证明了在线性非局部弹性力学中能量平衡方程是动量平衡方程的首次积分,论证了在非局部场论中局部化体力残余恒为零。详细推导了线性非局部弹性理论的本构方程,得到了反对称应力存在的新结果。  相似文献   

6.
本文研究了目前一些求解数值微分的方法无法求出端点导数或是求出的端点附近导数不可用的问题.利用构造一类积分方程的方法,将数值微分问题转化为这类积分方程的求解,并用一种加速的迭代正则化方法来求解积分方程. 数值实验结果表明该算法可以有效求出端点的导数,且具有数值稳定、计算简单等优点.  相似文献   

7.
非均匀介质中弹性波动方程的参数摄动法   总被引:2,自引:0,他引:2  
本文通过对非均匀介质弹性波动方程中的介质参数引入背景场量和摄动量,得到以摄动项为次生源的均匀介质中的波动方程,利用Green函数理论化微分方程为积分方程;然后把均匀介质中的位移波场做为第一次迭代结果,代入积分方程进行位移波场的求解;当扰动量达50%时,此方法仍然有效,分析数值结果,从而对一般非均匀介质中的波场性质有了一个定性了解,结果与一般非均匀介质中的声波局部理论基本一致.  相似文献   

8.
新的三维力学GELD正演和反演算法   总被引:1,自引:0,他引:1  
在本文中 ,我们提出了新的整体积分和局部微分GILD的力学正演和反演方法 .我们建立了弹性和塑性力学的体积分微分方程 .我们证明了这个体积分方程和伽辽金虚功原理等价 .新的GILD方法是基于这个体积分微分方程 .GL方法是进一步的发展 ,GL是一种整体场和局部场相互作用的全新方法 .在这个方法中 ,仅仅需要解 3× 3或者 6 × 6的局部小矩阵 .特别是 ,用GL方法求解无限域的偏微分方程时 ,不需要任何人工边界 ,不需要任何吸收边界条件和不需要任何边界积分方程 .新的三维力学GILD正演和反演算法已被应用研究奈米材料的力学性质的模拟计算 .我们获得非常好的奈米材料的力学变形的超拉力的力学性质 .我们提出了新的奈米地球物理新概念和发现了GILD数值量子  相似文献   

9.
研究带非局部积分项的二阶线性常微分方程及其在金融保险上的应用.首先讨论带非局部积分项的二阶常微分方程解的存在唯一性,通过变量代换和累次积分交换积分顺序将非局部项简化,将方程化为方程组,然后完成了对方程组解的存在唯一性的证明.接着分析了带非局部项的二阶常微分方程解的结构,给出了方程解的形式.最后通过推导,指出带非局部项的线性常微分方程在保险公司的破产概率研究中的应用,重点放在二阶方程的应用上,并且在某一特定情况下,举出了一个可以给出解析解的例子.  相似文献   

10.
非线性粘弹性柱的稳定性和混沌运动   总被引:18,自引:2,他引:16  
研究了受轴向周期力作用的各向同性简支柱的动力学稳定性。假定粘弹性材料满足Lea-derman非线性本构关系。导出运动方程为非线性偏微分-积分方程,并利用Galerkin方法简化为非线性微分-积分方程。应用平均法进行了稳定性分析,并用数值结果进行验证。数值结果还表明系统可能存在混沌运动。  相似文献   

11.
An analytical approach for static bending and buckling analyses of curved nanobeams using the differential constitutive law, consequent to Eringen’s strain-driven integral model coupled with a higher-order shear deformation accounting for through thickness stretching is presented. The formulation is general in the sense that it can be deduced to examine the influence of different structural theories, for static and dynamic analyses of curved nanobeams. The governing equations derived using Hamiltons principle are solved in conjunction with Naviers solutions. The formulation is validated considering problems for which solutions are available. A comparative study is made here by various theories obtained through the formulation. The effects various structural parameters such as thickness ratio, beam length, rise of the curved beam, and nonlocal scale parameter are brought out on bending and stability characteristics of curved nanobeams.  相似文献   

12.
In our previous works, we proposed a reproducing kernel method for solving singular and nonsingular boundary value problems of integer order based on the reproducing kernel theory. In this letter, we shall expand the application of reproducing kernel theory to fractional differential equations and present an algorithm for solving nonlocal fractional boundary value problems. The results from numerical examples show that the present method is simple and effective.  相似文献   

13.
A numerical method is suggested for solving systems of nonautonomous loaded linear ordinary differential equations with nonseparated multipoint and integral conditions. The method is based on the convolution of integral conditions into local ones. As a result, the original problem is reduced to an initial value (Cauchy) problem for systems of ordinary differential equations and linear algebraic equations. The approach proposed is used in combination with the linearization method to solve systems of loaded nonlinear ordinary differential equations with nonlocal conditions. An example of a loaded parabolic equation with nonlocal initial and boundary conditions is used to show that the approach can be applied to partial differential equations. Numerous numerical experiments on test problems were performed with the use of the numerical formulas and schemes proposed.  相似文献   

14.
Two key integro-differential continuity equations are derived in stresses for axisymmetric quasi-static problems of elasticity and thermoelasticity in unbounded domains. The possibility of equivalent reduction of the integro-differential equations to the corresponding differential equations is demonstrated. Boundary and integral conditions for solving those equations are formulated.  相似文献   

15.
This paper describes a collocation method for numerically solving Cauchy-type linear singular integro-differential equations. The numerical method is based on the transformation of the integro-differential equation into an integral equation, and then applying a collocation method to solve the latter. The collocation points are chosen as the Chebyshev nodes. Uniform convergence of the resulting method is then discussed. Numerical examples are presented and solved by the numerical techniques.  相似文献   

16.
Peridynamics via finite element analysis   总被引:2,自引:0,他引:2  
Peridynamics is a recently developed theory of solid mechanics that replaces the partial differential equations of the classical continuum theory with integral equations. Since the integral equations remain valid in the presence of discontinuities such as cracks, the method has the potential to model fracture and damage with great generality and without the complications of mathematical singularities that plague conventional continuum approaches. Although a discretized form of the peridynamic integral equations has been implemented in a meshless code called EMU, the objective of the present paper is to describe how the peridynamic model can also be implemented in a conventional finite element analysis (FEA) code using truss elements. Since FEA is arguably the most widely used tool for structural analysis, this implementation may hasten the verification of peridynamics and significantly broaden the range of problems that the practicing analyst might attempt. Also, the present work demonstrates that different subregions of a model can be solved with either the classical partial differential equations or the peridynamic equations in the same calculation thus combining the efficiency of FEA with the generality of peridynamics. Several example problems show the equivalency of the FEA and the meshless peridynamic approach as well as demonstrate the utility and robustness of the method for problems involving fracture, damage and penetration.  相似文献   

17.
We introduce a hybrid Gegenbauer (ultraspherical) integration method (HGIM) for solving boundary value problems (BVPs), integral and integro-differential equations. The proposed approach recasts the original problems into their integral formulations, which are then discretized into linear systems of algebraic equations using Gegenbauer integration matrices (GIMs). The resulting linear systems are well-conditioned and can be easily solved using standard linear system solvers. A study on the error bounds of the proposed method is presented, and the spectral convergence is proven for two-point BVPs (TPBVPs). Comparisons with other competitive methods in the recent literature are included. The proposed method results in an efficient algorithm, and spectral accuracy is verified using eight test examples addressing the aforementioned classes of problems. The proposed method can be applied on a broad range of mathematical problems while producing highly accurate results. The developed numerical scheme provides a viable alternative to other solution methods when high-order approximations are required using only a relatively small number of solution nodes.  相似文献   

18.
The free vibration response of single-walled carbon nanotubes (SWCNTs) is investigated in this work using various nonlocal beam theories. To this end, the nonlocal elasticity equations of Eringen are incorporated into the various classical beam theories namely as Euler-Bernoulli beam theory (EBT), Timoshenko beam theory (TBT), and Reddy beam theory (RBT) to consider the size-effects on the vibration analysis of SWCNTs. The generalized differential quadrature (GDQ) method is employed to discretize the governing differential equations of each nonlocal beam theory corresponding to four commonly used boundary conditions. Then molecular dynamics (MD) simulation is implemented to obtain fundamental frequencies of nanotubes with different chiralities and values of aspect ratio to compare them with the results obtained by the nonlocal beam models. Through the fitting of the two series of numerical results, appropriate values of nonlocal parameter are derived relevant to each type of chirality, nonlocal beam model, and boundary conditions. It is found that in contrast to the chirality, the type of nonlocal beam model and boundary conditions make difference between the calibrated values of nonlocal parameter corresponding to each one.  相似文献   

19.
In this study, the numerical solutions of a system of two nonlinear integro-differential equations, which describes biological species living together, are derived employing the well-known Homotopy-perturbation method. The approximate solutions are in excellent agreement with those obtained by the Adomian decomposition method. Furthermore, we present an analytical approximate solution for a more general form of the system of nonlinear integro-differential equations. The numerical result indicates that the proposed method is straightforward to implement, efficient and accurate for solving nonlinear integro-differential equations.  相似文献   

20.
Numerical methods are proposed for solving some problems for a system of linear ordinary differential equations in which the basic conditions (which are generally nonlocal ones specified by a Stieltjes integral) are supplemented with redundant (possibly nonlocal) conditions. The system of equations is considered on a finite or infinite interval. The problem of solving the inhomogeneous system of equations and a nonlinear eigenvalue problem are considered. Additionally, the special case of a self-adjoint eigenvalue problem for a Hamiltonian system is addressed. In the general case, these problems have no solutions. A principle for constructing an auxiliary system that replaces the original one and is normally consistent with all specified conditions is proposed. For each problem, a numerical method for solving the corresponding auxiliary problem is described. The method is numerically stable if so is the constructed auxiliary problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号