首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
真空紫外辐照对加成型硅橡胶光学性能的影响   总被引:5,自引:0,他引:5  
考察了加成型硅橡胶在真空环境中经1000ESH紫外辐照后的性能变化。结果表明,辐照后材料均出现发黄的现象,光学透过率大幅度 下降,同时加入硅酸钾包覆后制备的热控涂层反射率下降。经原位测试与离位测试,发现加成型硅橡胶在两种不同条件下测得的结果差异较小,而在有机硅橡胶中加入ZnO后原位与离位测试结果则差异明显,表现出明显的漂白作用。  相似文献   

2.
Abstract— A mutant cell line, DRP 287, sensitive to solar UV radiation and deficient in the repair of solar UV-induced nondimer DNA damage, was derived from ICR 2A frog cells. These cells were transfected with human DNA and a secondary transformant obtained in which normal solar UV sensitivity was restored and the repair defect corrected. The DNA from this secondary transformant was used to construct a genomic DNA library from which a recombinant phage was isolated containing the human gene capable of restoring normal solar UV sensitivity and correcting the repair defect in the DRP 287 cells. This represents the first human gene which has been isolated that is specifically involved in the repair of nondimer DNA damage induced by solar UV radiation. It has been designated SUVCC1 to denote solar UV cross-complementing gene number 1.  相似文献   

3.
Effects of solar radiation on collagen and chitosan films   总被引:3,自引:0,他引:3  
Photo-aging and photo-degradation are the deleterious effect of chronic exposure to sun light of many materials made of natural polymers. The resistance of the products on the action of solar radiation is very important for material scientists. The effect of solar radiation on two natural polymers: collagen and chitosan as well as collagen/chitosan blends in the form of thin films has been studied by UV-Vis and FTIR spectroscopy. It was found that UV-Vis spectra, which characterise collagen and collagen/chitosan films, were significantly altered by solar radiation. FTIR spectra of collagen and collagen/chitosan films showed that after solar irradiation the positions of amide A and amide I bands were shifted to lower wavenumbers. There was not any significant alteration of chitosan UV-Vis and FTIR spectra after solar radiation. In the condition of the experiment chitosan films were resistant to the action of solar radiation. The effect of solar UV radiation in comparison to artificial UV radiation has been discussed.  相似文献   

4.
Our goal was to derive a quantitative factor that would allow us to predict the solar sensitivity of vegetative bacterial cells to natural solar radiation from the wealth of data collected for cells exposed to UVC (254 nm) radiation. We constructed a solar effectiveness spectrum for inactivation of vegetative bacterial cells by combining the available action spectra for vegetative cell killing in the solar range with the natural sunlight spectrum that reaches the ground. We then analyzed previous studies reporting the effects of solar radiation on vegetative bacterial cells and on bacterial spores. Although UVC-sensitive cells were also more sensitive to solar radiation, we found no absolute numerical correlation between the relative solar sensitivity of vegetative cells and their sensitivity to 254 nm radiation. The sensitivity of bacterial spores to solar exposure during both summer and winter correlated closely to their UVC sensitivity. The estimates presented here should make it possible to reasonably predict the time it would take for natural solar UV to kill bacterial spores or with a lesser degree of accuracy, vegetative bacterial cells after dispersion from an infected host or after an accidental or intentional release.  相似文献   

5.
Abstract— The amount of solar radiation intercepted by an object depends on the orientation of the object with respect to the sun and the angular distribution of the diffuse component of solar radiation, which is commonly considered to be approximately isotropic. The angular distribution of the diffuse UV, visible and near-infrared insolation was measured at several solar zenith angles between 32° and 68° under cloudless skies at Lauder, New Zealand (45S), and shown to be anisotropic. The diffuse solar UV radiation increases markedly with solar elevation and is a large proportion of the total UV irradiance. The diffuse visible light and infrared radiation are small components of the total irradiance and almost independent of solar elevation. The angular distribution of erythemal UV radiation was tabulated and is available on request.  相似文献   

6.
Terrestrial solar ultraviolet (UV) radiation has significant implications for human health and increasing levels are a key concern regarding the impact of climate change. Monitoring solar UV radiation at the earth's surface is therefore of increasing importance. A new prototype portable CCD (charge‐coupled device) spectrometer‐based system has been developed that monitors UV radiation (280–400 nm) levels at the earth's surface. It has the ability to deliver this information to the public in real time. Since the instrument can operate autonomously, it is called the Autonomous Portable Solar Ultraviolet Spectroradiometer (APSUS). This instrument incorporates an Ocean Optics QE65000 spectrometer which is contained within a robust environmental housing. The APSUS system can gather reliable solar UV spectral data from approximately April to October inclusive (depending on ambient temperature) in the UK. In this study the new APSUS unit and APSUS system are presented. Example solar UV spectra and diurnal UV Index values as measured by the APSUS system in London and Weymouth in the UK in summer 2012 are shown.  相似文献   

7.
The body surface area of man is the relevant receiving surface for solar UV radiation. To consider this body surface geometry, the biologically-effective UV radiation of the solar global radiation was measured. This was done at 26 differently aligned measuring points whose orientation was determined by the angle of inclination (vertical) and the azimuth (horizontal). Approximately eight hundred sets of measurement series were carried out at 33 different sites. A simple model, developed from the data obtained, made it possible to calculate relative irradiance as a function of the angle of inclination and the ground reflection (UV albedo). Thus relative risk of solar UV exposure to different regions of the body can be assessed. In addition to this, if the irradiance on a horizontal plane (measured or calculated by a corresponding model) is taken into consideration, the absolute values for UV irradiance on tilted planes can be determined.  相似文献   

8.
It is well known that ultraviolet (UV) radiation induces erythema, immunosuppression and carcinogenesis. We hypothesized that chronic exposure to solar UV radiation induces adaptation that eventually prevents the suppression of acquired immunity. We studied adaptation for UV-induced immunosuppression after chronic exposure of mice to a suberythemal dose of solar simulated radiation (SSR) with Cleo Natural lamps, and subsequent exposure to an immunosuppressive dose of solar or UVB radiation (TL12). After UV dosing, the mice were sensitized and challenged with either diphenylcyclopropenone (DPCP) or picryl chloride (PCl). To assess the adaptation induced by solar simulated radiation, we measured the proliferative response and cytokine production of skin-draining lymph node cells after immunization to DPCP, the contact hypersensitivity (CHS) response to PCl, and thymine-thymine (T-T) cyclobutane dimers in the skin of mice. After induction of immunosuppression by SSR or by TL12 lamps, the proliferative response of draining lymph node cells after challenge with DPCP, or the CHS after challenge with PCl, showed significant suppression of the immune response. Chronic irradiation from SSR preceding the immunosuppressive dose of UV failed to restore the suppressed immune response. Reduced lipopolysaccharide-triggered cytokine production (of IL-12p40, IFN-gamma, IL-6 and TNF-alpha) by draining lymph node cells of mice sensitized and challenged with DPCP indicated that no adaptation is induced. In addition, the mice were not protected from T-T dimer DNA damage after chronic solar irradiation. Our studies reveal no evidence that chronic exposure to low doses of SSR induces adaptation to UV-induced suppression of acquired immunity.  相似文献   

9.
The importance of conidial pigmentation to solar UV radiation tolerance in the entomopathogenic fungus Metarhizium anisopliae var. anisopliae, was estimated by comparing the effects of exposure to simulated solar UV radiation on the wild-type parent strain U.S. Department of Agriculture (USDA)-Agricultural Research Service (ARS) Collection of Entomopathogenic Fungal Cultures (ARSEF) 23, which has dark green conidia, and three groups of color mutants with yellow, purple and white conidia. The comparisons included inactivation levels and the kinetics of germination of conidia exposed or not exposed to simulated solar UV radiation. In addition to significantly inactivating the conidia of different mutants, exposure to radiation delayed for several hours the germination of surviving conidia of the wild type and all mutants. In general, mutants with white conidia were more sensitive to simulated solar UV radiation than mutants with purple conidia, which were more sensitive than mutants with yellow conidia, which in turn were more sensitive than the green wild strain. A significant variation in tolerance to simulated solar radiation was observed among mutants within each color group, particularly among mutants with yellow conidia. Revertants with green conidia, DWR 179 and DWR 176, were obtained from the very sensitive UV mutants DWR 148 (yellow conidia) and DWR 149 (purple conidia), respectively. These revertants had levels of tolerance to simulated solar UV radiation similar to those of the wild-type ARSEF 23. This observation is strong evidence of the importance of green conidial pigmentation for tolerance to simulated solar UV radiation, a factor that could be manipulated to produce M. anisopliae strains with more tolerance to solar UV radiation.  相似文献   

10.
Tissue equivalent radiochromic gel material containing ferrous ions, xylenol-orange ion indicator and gelatin as gelling agent (FXG) is known to be sensitive to γ- and X-rays; hence it has been used for ionizing radiation dosimetry. Changes in optical absorbance properties of FXG material over a wide region in the visible spectrum were found to be proportional to the radiation absorbed dose. An earlier study demonstrated the sensitivity of FXG gel detector to ultraviolet radiation and therefore that could give quantitative measure for UV exposure. This study focuses on the detection of UVA radiation (315–400 nm), which forms an important part (~97%) of the natural solar UV radiation reaching the earth surface. A solar UV simulator device was used to deliver UVA radiation to FXG samples. The beam was optically modified to irradiate gel samples at an exposure level about 58 W/m2, which is comparable to the summer natural UVA radiation measured outside the laboratory building at midday (~60 W/m2). Experimental results were used to generate mathematical second order formulas that give the relationship between UVA dose and optical absorbance changes observed at two wavelengths in the visible region of the spectrum—430 and 560 nm.  相似文献   

11.
A 1 m diameter water lens was used to focus solar radiation, giving an 8-fold concentration of the total spectrum and a cytocidal flux similar to that of laboratory UV sources. Survival curves for human melanoma cells were similar for sunlight and 254 nm UV, in that D q, was usually larger than D o. An xeroderma pigmentosum lymphoblastoid line was equally sensitive to both agents and human cell lines sensitive to ionizing radiation (lymphoblastoid lines), crosslinking agents or monofunctional alkylating agents (melanoma lines) had the same 254 nm UV and solar survival responses as appropriate control lines. Two melanoma sublines derived separately by 16 cycles of treatment with sunlight or 254 nm UV were crossresistant to both agents. In one melanoma cell line used for further studies, DNA strand breaks and DNA-protein crosslinking were induced in melanoma cells by sunlight but pyrimidine dimers (paper chromatography) and DNA interstrand crosslinking (alkaline elution) could not be detected. The solar fiuence response of DNA repair synthesis was much less than that from equitoxic 254 nm UV, reaching a maximum near the D o value and then declining; semiconservative DNA synthesis on the other hand remained high. These effects were not due to changes in thymidine pool sizes. Solar exposure did not have a major effect on 254 nm UV-induced repair synthesis.  相似文献   

12.
In this study the personal exposure to solar UV radiation in an urban environment was measured. Lifestyle in an urban environment is characterized by staying indoors during most of the day. Furthermore, the ambient UV radiation is mitigated by shadowing by buildings. The aim of the study was to find out activities which may contribute to UV-induced health risk in a low exposure environment. Exposure was measured during typical outdoor activities: shopping, walking, sitting in a sidewalk café, cycling, sightseeing and at an open-air pool (solar elevation: 10°–70°). Measurements were taken with an optoelectronic device which was fixed on the chest. Besides the UV Index we used the sun burn time (SBT) for risk assessments. Generalization of our results was made by calculating ratios of personal exposure to the ambient UV radiation. UV exposure was by far the highest when our study subject stayed at the swimming pool. The SBT was around 30 min for melano-compromised skin type. For all other activities, except shopping, the SBT range up to 1 h. With respect to photodamage we found that at high solar elevation (>45°) photoprotective measures should be applied for certain activities even within a city.  相似文献   

13.
硅纳米线阵列是利用太阳能解决能源和环境问题的重要材料,然而,可用于柔性器件和生物相容性器件的柔性硅纳米线阵列的制备方法非常有限。本文通过化学气相沉积,以及高分子转移的方法,成功制备了具有不同高分子层厚度的柔性硅纳米线阵列,并研究了高分子层厚度对柔性硅纳米线阵列光催化性能的影响。结果表明,高分子层厚度越小,柔性硅纳米线阵列的光催化性能越强。因此,利用本文提出的制备方法得到的高分子层厚度低至5 μm的柔性硅纳米线阵列,具有作为高效柔性太阳能电池和全光解水系统光电极的潜力。同时,该研究结果也为设计具有高效光能转换能力的柔性纳米线阵列提供了重要依据。  相似文献   

14.
In order to assess the short- and long-term impacts of UV radiation (UVR, 280-400nm) on the red tide alga, Heterosigma akashiwo, we exposed the cells to three different solar radiation treatments (PAB: 280-700nm, PA: 320-700nm, P: 400-700nm) under both solar and artificial radiation. A significant decrease in the effective quantum yield (Y) during high irradiance periods (i.e., local noon) was observed, but the cells partially recovered during the evening hours. Exposure to high irradiances for 15, 30, and 60min under a solar simulator followed by the recovery (8h) under dark, 9 and 100micromolphotonsm(-2)s(-1) of PAR, highlighted the importance of the irradiance level during the recovery period. Regardless the radiation treatments, the highest recovery (both in rate and total Y) was found at a PAR irradiance of 9micromolphotonsm(-2)s(-1), while the lowest was observed at 100micromolphotonsm(-2)s(-1). In all experiments, PAR was responsible for most of the observed inhibition; nevertheless, the cells exposed only to PAR had the highest recovery in any condition, as compared to the other radiation treatments. In long-term experiments (10 days) using semi-continuous cultures, there was a significant increase of UV-absorbing compounds (UV(abc)) per cell from 1.2 to >4x10(-6)microgUV(abc)cell(-1) during the first 3-5 days of exposure to solar radiation. The highest concentration of UV(abc) was found in samples exposed in the PAB as compared to PA and P treatments. Growth rates (mu) mimic the behavior of UV-absorbing compounds, and during the first 5 days mu increased from <0.2 to ca. 0.8, and stayed relatively constant at this value during the rest of the experiment. The inhibition of the Y decreased with increasing acclimation of cells. All our data indicates that H. akashiwo is a sensitive species, but was able acclimate relatively fast (3-5 days) synthesizing UV-absorbing compounds and thus reducing any impact either on photosystem II or on growth.  相似文献   

15.
Abstract— The proportion and composition of the human cutaneous CD3+ T lymphocyte population was determined in situ following a single exposure to physiological, erythema-inducing doses of simulated solar radiation, mainly consisting of UV radiation. Biopsies were taken 1, 2 and 7 days after local irradiation of normal volunteers with 1,2 and 4 MED by a xenonarc lamp and immunohistochemistry was performed on cryostat sections. Ultraviolet radiation caused an initial decrease of intraepidermal CD3+ T-cell numbers or even could lead to T-cell depletion 24 and 48 h postirradiation, and this was followed by an infiltration of T cells in the epidermis as determined 1 week after UV exposure. The number of dermal CD3+ T ceDs was increased 24 h after irradiation, reached a maximum at 48 h and subsequently declined at day 7, though remained significantly higher than the unirradiated control Double staining demonstrated that the CD3+ T cells, which immigrated into the (epi)dermis upon UV exposure, coexpressed CD4 but not CD8. Therefore the CD4/CD8 ratio in skin was markedly increased during the first week upon UV exposure. Our time course study shows that UV radiation affects die T-cell population within human skin by depleting the majority of epidermal T cells and initiating a selective influx of CD4+ T cells.  相似文献   

16.
Pretreatment of human cells with near UV radiation (UVA) in fluences exceeding 5 × 104 Jm−2 caused a decrease in the amount of the unscheduled DNA synthesis induced by far UV radiation (UVC). The DNA repair synthesis, as measured by the incorporation of [3H] -thymidine, is reduced by nearly a factor of 2 for a UVA radiation exposure of 1.5 × 105 Jm−2. Since solar UVA fluence rate is rather independent of latitude, this figure corresponds to a UVA exposure time of 50-60 min from noon sunlight in the summer time.  相似文献   

17.
THE ROLE OF SOLAR ULTRAVIOLET RADIATION IN 'NATURAL' WATER PURIFICATION   总被引:2,自引:0,他引:2  
Abstract— The concentration of Escherichia coli in the input and output of a tertiary wastewater system (4 lagoons) has been monitored over an 11 month period. The integrated flux of biologically active solar ultraviolet (UV) radiation was measured during this period. By also determining (1) the effective temperature in the system, (2) the growth rate of E. coli at the effective temperature, (3) the penetration of the solar UV into the lagoons, (4) the dose-response relation for killing of E. coli by UV and (5) the retention time of water in the system, it is possible to compare the 'die off' expected from solar UV exposure to the actual 'die off' observed for different batches of water.
The observed killing of E. coli was quite close to the values calculated, considering the numerous factors involved. Solar UV light would thus seem to be a very important factor in the natural purification of water. Because each successful species must possess characteristics (physiological or behavioral) which provide adequate resistance to solar UV, the ecological role of solar UV radiation has not been widely appreciated.  相似文献   

18.
In this paper, we report the development and characterization of a solar ultraviolet (UV) dosimetry system that can be used as a film badge for radiation monitoring. DNA molecules are coated on a thin nylon membrane as a UV dosimeter. The membrane is sealed in a polyethylene filter envelope with silica gel to keep the humidity low. After exposure to UV or solar light, induced DNA damage is measured by an immunochemical reaction. The intensity of color developed during the immunological reaction can be correlated linearly with the irradiated UV dose delivered by an Oriel solar simulator within a limited dose range. We observe no effects of temperature on the level of damage induction. The membrane is proficient for measuring DNA damage for more than 21 days when stored at either 37 or 4°C. The induced damage remains stable on the membrane for at least 22 days at both 37 and 4°C. In addition to these indoor experiments, we report measurements of solar UV dose in outdoor experiments.  相似文献   

19.
The spectral properties of selected UV-blocking and UV-transmitting covering materials were characterized by means of a UV-VIS spectroradiometer or a UV-VIS spectrometer to provide researchers and growers with guidelines for selecting suitable materials for use in studying the effects of ambient solar UV radiation on the production of tomatoes and other high-value crops in high tunnels. A survey was made of a wide range of plastic covering materials to identify commercially available products that had the desired characteristics of transmitting high levels of photosynthetically active radiation and of being stable under ambient solar UV radiation. The study was focused on evaluating films that either blocked or transmitted UV wavelengths below 380 nm to determine comparative growth, yield and market quality and to provide a tool for integrated pest management. Based on this survey, two contrasting covering materials of similar thickness (0.152 mm) and durability (4-year polyethylene), one a UV-blocking film and the other a UV-transmitting film, were selected and used to cover two high tunnels at Beltsville, MD. Spectroradiometric measurements were made to determine comparative spectral irradiance in these two high tunnels covered with these materials and under ambient solar UV radiation. Comparative measurements were also made of selected glass and plastic materials that have been used in UV exclusion studies.  相似文献   

20.
New Entrance Optics for Solar Spectral UV Measurements   总被引:2,自引:0,他引:2  
The investigation of the impact of solar UV radiation on the biosphere requires spectral measurements of solar UV radiation of high accuracy. However, the accuracy of current measurements is limited, and this can partly be attributed to the entrance optics of the instruments used for these examinations. The angular response of spectro-radiometers measuring spectral global UV irradiance should be given by the cosine of the incidence angle. In-tercomparison campaigns have shown that deviations from this ideal cosine response lead to uncertainties in solar measurements of more than 10%. Here we present recently developed entrance optics that reduce these uncertainties to ±4% in the UV. The new entrance optics have been characterized with respect to their angular response, transmission, weather durability, fluorescence and dependence of the angular response on wavelength and polarization. Solar spectroradiometric measurements carried out with the new optics were compared with simultaneously performed measurements of a second spectroradiometer that was equipped with a conventional diffuser. The deviations of up to 12% between both systems are quantitatively explained to within 3%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号