首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inhibition effect of imidazole derivative 1,7′-dimethyl-2′-propyl-1H,3′H-2,5′-bibenzo[d]imidazole (DPBI) against mild steel corrosion in 1 M HCl solutions was evaluated using the conventional mass loss method, potentiodynamic polarization, linear polarization, and electrochemical impedance spectroscopy. The mass loss results showed that DPBI is an excellent corrosion inhibitor; electrochemical polarizations data revealed the mixed mode of inhibition; and the results of electrochemical impedance spectroscopy showed that the change in the impedance parameters, charge transfer resistance, and double layer capacitance with the change in the concentration of the inhibitor is due to the adsorption of the molecule leading to the formation of a protective layer on the surface of mild steel. The inhibition action of this compound was assumed to occur via adsorption on the steel surface through the active centers of the molecule.  相似文献   

2.
The inhibition of the corrosion of mild steel in hydrochloric acid solution by the seed extract of Karanj (Pongamia pinnata) has been studied using weight loss, electrochemical impedance spectroscopy, potentiodynamic polarization, and linear polarization techniques. Inhibition was found to increase with increasing concentration of the extract. The effect of temperature, immersion time, and acid concentration on the corrosion behavior of mild steel in 1 M HCl with addition of extract was also studied. The adsorption of the extract on the mild steel surface obeyed the Langmuir adsorption isotherm. Values of inhibition efficiency calculated from weight loss, potentiodynamic polarization, and electrochemical impedance spectroscopy are in good agreement. Polarization curves showed that Karanj (P. pinnata) seed extract behaves as a mixed-type inhibitor in hydrochloric acid. The activation energy as well as other thermodynamic parameters for the inhibition process was calculated. The adsorbed film on mild steel surface containing Karanj (P. pinnata) seed extract inhibitor was also measured by Fourier transform infrared spectroscopy. The results obtained showed that the seed extract of Karanj (P. pinnata) could serve as an effective inhibitor of the corrosion of mild steel in hydrochloric acid media.  相似文献   

3.
The new synthesized cationic Gemini surfactant (CGS) was tested as a corrosion inhibitor for carbon steel (CS) in 1.0?M hydrochloric acid using weight loss, electrochemical spectroscopy and potentiodynamic polarization. The inhibition efficiency is increased by increasing the CGS concentration and is almost constant within the temperature range studied. The inhibition was explained by adsorption of the CGS molecule on the CS surface. A mixed-type inhibitor is suggested for the inhibitory effects of CGS as revealed by the potentiodynamic polarization technique. The changes in impedance parameters suggested that the adsorption of the inhibitor on the CGS surface led to the formation of protective films. The adsorption of the CGS on the surface of CS obeys Langmuir adsorption isotherm. Thermodynamic and kinetic parameters were calculated and discussed.  相似文献   

4.
采用失重实验,动电位极化,交流阻抗,量子化学计算和拉曼光谱等方法研究了N,N′-二异丙氧基丙基二硫代二丙酰胺(DPDA)在1 mol.L-1盐酸溶液中对碳钢的缓蚀性能.失重实验结果表明,DPDA在盐酸溶液中能够有效地抑制碳钢的腐蚀,当缓蚀剂DPDA的浓度为1×10-3 mol.L-1时,其缓蚀效率达到90.2%.极化曲线表明DPDA为混合型缓蚀剂,单一的容抗弧变化表明碳钢电极表面的腐蚀过程主要由电荷转移步骤控制.由失重实验,动电位极化和电化学交流阻抗方法得到的DPDA缓蚀效率具有较好的相关性,均表现为缓蚀效率随着DPDA浓度的增大而增加.另外,DPDA在碳钢表面的吸附符合Langmuir吸附等温式.吸附过程的吉布斯自由能(ΔG0a0d0s)为-38.65 kJ.mol-1,这说明DPDA分子在碳钢表面形成共价键而发生了自发的化学吸附.拉曼光谱表明DPDA分子有效地吸附在碳钢表面,量子化学计算结果证明DPDA分子在碳钢表面的化学吸附活性中心集中在S原子上.  相似文献   

5.
Corrosion inhibition of mild steel (MS) by chloroquine (CQ) in 1 M HCl was investigated using weight loss, polarization, electrochemical impedance spectroscopy (EIS) and quantum chemical techniques. The inhibitor showed 99 % inhibition efficiency at concentration of 3.1 × 10?4 M. Polarization studies showed that CQ is a mixed-type inhibitor. Adsorption of inhibitor molecules on the MS surface showed Langmuir adsorption isotherm. Thermodynamic parameters led to the conclusion that adsorption is predominantly chemisorption. Quantum chemical calculations were carried out to investigate the corrosion-inhibiting property of CQ. Various parameters such as energy of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), softness of molecule, Mullikan charges on various atoms and number of electrons transferred from inhibitor molecule to metal were calculated and correlated with the inhibiting property of CQ.  相似文献   

6.
The effect of sodiumcarboxymethyl cellulose (Na-CMC) on the corrosion behavior of mild steel in 1.0 mol·L-1 HCl solution has been investigated by using weight loss (WL) measurement, potentiodynamic polarization, linear polarization resistance (LPR), and electrochemical impedance spectroscopy (EIS) methods. These results showed that the inhibition efficiency of Na-CMC increased with increasing the inhibitor concentration. Potentiodynamic polarization studies revealed that the Na-CMC was a mixed type inhibitor in 1.0 mol·L-1 HCl. The adsorption of the inhibitor on mild steel surface has been found to obey the Langmuir isotherm. The effect of temperature on the corrosion behavior of mild steel in 1.0 mol·L -1 HCl with addition of 0.04% of Na-CMC has been studied in the temperature range of 298-328 K. The associated apparent activation energy (E*a) of corrosion reaction has been determined. Scanning electron microscopy (SEM) has been applied to investigate the surface morphology of mild steel in the absence and presence of the inhibitor molecules.  相似文献   

7.
The effect of sodium carboxymethyl cellulose (Na-CMC) on the corrosion behavior of mild steel in 1.0 mol·L-1 HCl solution has been investigated by using weight loss (WL) measurement, potentiodynamic polarization, linear polarization resistance (LPR), and electrochemical impedance spectroscopy (EIS) methods. These results showed that the inhibition efficiency of Na-CMC increased with increasing the inhibitor concentration. Potentiodynamic polarization studies revealed that the Na-CMC was a mixed type inhibitor in 1.0 mol·L-1 HCl. The adsorption of the inhibitor on mild steel surface has been found to obey the Langmuir isotherm. The effect of temperature on the corrosion behavior of mild steel in 1.0 mol·L-1 HCl with addition of 0.04% of Na-CMC has been studied in the temperature range of 298-328 K. The associated apparent activation energy (E*a ) of corrosion reaction has been determined. Scanning electron microscopy (SEM) has been applied to investigate the surface morphology of mild steel in the absence and presence of the inhibitor molecules.  相似文献   

8.
The effectiveness of 1H?pyrazole?3,5?dicarboxylic acid 5?benzyl ester 3?phenyl ester (PCBPE) as a preventer for deterioration of IS 513 Gr. D steel in 1 M HCl medium is evaluated via weight loss, electrochemical impedance, and polarization techniques. Kinetic and thermodynamic parameters assessed the feasibility of the adsorption process at diverse temperatures. The inhibition action on mild steel has been enhanced with increasing PCBPE concentration. It is found from the polarization studies that PCBPE behaves as mixed type inhibitor in HCl medium. The adsorption process of PCBPE on mild steel surface from acid environment is favoured Langmuir adsorption isotherm. The shielding efficiency of PCBPE has been enhanced at elevated concentrations, and it has been diminished at amplified temperatures. The Atomic Force Microscope (AFM), Scanning Electron Microscope (SEM), and Energy Dispersive Spectrum (EDS) were used to establish a surface characterization of metal specimens. A quantum chemical analysis of electron density distributions in the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) demonstrated how the inhibitor undergoes adsorption on mild steel in 1 M HCl. All experimental findings substantiate the corrosion mitigation performance of PCBPE on mild steel in acidic environments.  相似文献   

9.
This study is attempted to develop a green corrosion inhibitor from a waste material of Jack fruit (Artocarpus heterophyllus). This method is therefore quite valuable to health, environment, and economic point of view. Pectin is isolated from the jackfruit peel waste using 0.05 ?N oxalic acid and used as an inhibitor for mild steel corrosion in acidic environment as it is highly water soluble. 250–1000 ?ppm of pectin was used in this study at a temperature range of 303–323 ?K. The protection efficiency of jack fruit pectin (JP) in 0.5 ?M HCl was evaluated by conventional weight loss and electrochemical techniques. The potentiodynamic polarization results revealed that JP could effectively reduce the corrosion of mild steel in acidic medium at 1000 ?ppm concentration with an inhibition efficiency of 89.75% and corrosion rate of 2.392 mpy. The mixed type behavior of the inhibitor is identified from Tafel polarization studies. Electrochemical impedance spectroscopy (EIS) measurements suggest that the corrosion inhibition process is kinetically controlled. adsorption and kinetic behavior of the inhibitor also have been studied. Surface manifestations were followed using FESEM and AFM techniques. DFT calculations and Monte Carlo simulations were also carried out to corroborate the experimental results with theoretical outputs and succeeded to a great extent.  相似文献   

10.
Argan hulls extract (AHE) was tested as corrosion inhibitor for mild steel in 1?M HCl. Weight loss measurements, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS) revealed that inhibiting action increased with increasing concentration of the inhibitor. The highest efficiency 97.3% was obtained at 5?g/L AHE. There was good agreement between gravimetric and electrochemical methods (potentiodynamic polarization and EIS). Results obtained from EIS measurements were analyzed to model the corrosion-inhibition process by use of the appropriate equivalent circuit model; a constant phase element was used. Polarization measurements show also that AHE acts as good mixed inhibitor. AHE is adsorbed on the steel surface in accordance with a Langmuir isotherm adsorption model.  相似文献   

11.
The inhibition effect of polyphenols extracted from olive mill wastewater (PP) on carbon steel in 1.0 M HCl solution was studied. Inhibition efficiency of PP was carried out by using chemical (weight loss method) and electrochemical techniques [potentiodynamic polarization and electrochemical impedance spectroscopy (EIS)]. The effect of temperature and immersion time on the corrosion behavior of carbon steel in 1.0 M HCl with addition of an extract was also studied. The results show that PP acts as a very good inhibitor, and the inhibition efficiency increases with the concentration of PP and decreases with rising temperature. Polarization curves show that PP behaves as a mixed-type inhibitor in hydrochloric acid. Data, obtained from EIS measurements, were analyzed to model the corrosion inhibition process through an appropriate equivalent circuit model; a constant phase element has been used. EIS shows that charge-transfer resistance increases and the capacitance of double layer decreases with the inhibitor concentration, confirming the adsorption process mechanism. The activation energy as well as other thermodynamic parameters for the inhibition process were calculated. The adsorption of PP obeys the Langmuir adsorption isotherm.  相似文献   

12.
The cationic gemini surfactant 1,2-bis(N-tetradecyl-N,N-dimethylammonium)ethane dibromide (14-2-14) was synthesized using a previously described method. The surfactant was characterized using 1H NMR. The corrosion inhibition effect of 14-2-14 on mild steel in 1 M HCl at temperatures 30–60°C was studied using weight loss measurements, potentiodynamic polarization measurements and electrochemical impedance spectroscopy. Morphology of the corroded mild steel specimens was examined using scanning electron microscopy (SEM). The results of the studies show that gemini surfactant is an efficient inhibitor for mild steel corrosion in 1 M HCl; the maximum inhibition efficiency (IE) of 98.06% is observed at surfactant concentration of 100 ppm at 60°C. The %IE increases with the increasing inhibitor concentration and temperature. The adsorption of inhibitor on the mild steel surface obeys Langmuir adsorption isotherm. SEM studies confirmed smoother surface for inhibited mild steel specimen.  相似文献   

13.
Imidazopyridine derivatives, namely 4‐methoxy‐N‐((2‐(4‐methoxyphenyl)H‐imidazo[1,2‐a]pyridin‐3‐yl)methylene)benzenamine (MMPIPB) and 4‐chloro‐N‐((2‐(4‐methoxyphenyl)H‐imidazo[1,2‐a]pyridin‐3yl)methylene)benzenamine (CMPIPB), were investigated as inhibitors for mild steel corrosion in 15% HCl solution using the weight loss and electrochemical techniques. According to electrochemical impedance spectroscopy studies, MMPIPB and CMPIPB show corrosion inhibition efficiency of 84.8 and 77.2% at 10‐ppm concentration and 98.1 and 94.8% at 80‐ppm concentration, respectively at 303 K. The corrosion inhibition efficiency of both inhibitors increased with increasing inhibitor concentration and decreased with increasing temperature. The adsorption of both inhibitor molecules on the surface of mild steel obeys Langmuir adsorption isotherm. Polarization studies showed that both studied inhibitors were of mixed type in nature. Electrochemical impedance spectroscopy studies showed that for both inhibitors, the value of charge transfer resistance increased and double‐layer capacitance decreased on increasing the concentration of inhibitors. Scanning electron microscopy, energy‐dispersive X‐ray spectroscopy (EDX), and atomic force microscopy were performed for surface study. The density functional theory was employed for theoretical calculations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
The inhibition of mild steel corrosion in aerated acid mixture of 0.5 N H2SO4 and 0.5 N HCl solution was investigated using potentiodynamic polarization studies, linear polarization studies, electrochemical impedance spectroscopy, adsorption, and surface morphological studies. The effect of inhibitor concentration on corrosion rate, degree of surface coverage, adsorption kinetics, and surface morphology is investigated. The inhibition efficiency increased markedly with increase in additive concentration. The presence of PEG and PVP decreases the double-layer capacitance and increases the charge-transfer resistance. The inhibitor molecules first adsorb on the metal surface following a Langmuir adsorption isotherm. Both PEG and PVP offer good inhibition properties for mild steel and act as mixed-type inhibitors. Surface analysis by scanning electron microscopy (SEM) and atomic force microscopy (AFM) shows that PVP offers better protection than PEG.  相似文献   

15.
A new corrosion inhibitor namely o-Chloroaniline-N-benzylidene (o-CANB) has been synthesized and its inhibitive performance toward the corrosion of Al-Pure in 1.0 M hydrochloric acid has been investigated. Corrosion inhibition was studied by chemical method (weight loss) and electrochemical techniques including polarization method and electrochemical impedance spectroscopy (EIS). The present study has shown that this inhibitor is good in acidic media and the inhibition efficiency up to >99% in 1.0 M HCl. Polarization measurement revealed that the investigated inhibitor is a mixed type with a predominant action on cathode. Impedance measurement showed that the charge transfer resistance (Rct) increased and double layer capacitance (Cdl) decreased with an increase in the inhibitor's concentration. Obtained results about inhibition efficiency from weight loss, polarization study and EIS are in good agreement with each other. The adsorption of the inhibitor on the metal surface in the acid solution was found to obey Langmuir's adsorption isotherm.  相似文献   

16.
Inhibition of the corrosion of mild steel in aerated 0.5?N H2SO4 solution by 4-amino-4H-1,2,4-triazole-3,5-dimethanol (ATD) was investigated by use of potentiodynamic polarization (Tafel), electrochemical impedance spectroscopy, adsorption, and surface morphological studies. The effects on the rate of corrosion of inhibitor concentration, temperature, extent of surface coverage, adsorption kinetics, and surface morphology were investigated. Inhibition efficiency increased markedly with increasing ATD concentration and decreased slightly with increasing temperature. The presence of ATD reduced the capacitance of the double layer and increased the charge-transfer resistance. Values of the activation energy (E a) and of the thermodynamic data adsorption equilibrium constant (K ads) and free energy of adsorption (??G ads) were computed from the temperature dependence of the corrosion current. The inhibitor molecule first became adsorbed on the mild steel surface, obeying the Langmuir adsorption isotherm, and substantially reduced the rate of corrosion. Results of electroanalytical studies revealed that ATD acts as a mixed-type inhibitor.  相似文献   

17.
1,3,5-tri-p-tolyl-1,3,5-triazene was investigated as a corrosion inhibitor for brass in 0.5 M HCl solution using weight loss, potentiodynamic polarization, linear polarization resistance and electrochemical impedance spectroscopy. Data obtained from these methods showed average inhibition efficiency (76 %) at optimum concentration. The adsorption of the inhibitor on the brass surface follows the Frumkin adsorption isotherm.  相似文献   

18.
The corrosion inhibition of mild steel in 0.5 M H2SO4 solution by the extract of litchi peel (Litchi chinensis) was studied by weight loss method, potentiodynamics polarization and electrochemical impedance spectroscopy (EIS). The results show that the litchi peels extract acts as mixed-type inhibitor. The inhibition of corrosion is found to be due to adsorption of the extract on metal surface, which is in conformity with Langmuir’s adsorption isotherm. UV–Vis, Fourier transform infrared (FT-IR) spectroscopy and Scanning electron microscopy (SEM) studies confirm that the inhibition of corrosion of mild steel occurs through adsorption of the inhibitor molecules.  相似文献   

19.
1,3-Bis-(morpholin-4-yl-phenyl-methyl)-thiourea (MBT) was synthesized and their influence on the inhibition of corrosion on mild steel in various hydrochloric acid concentrations has been investigated by weight loss, potentiodynamic polarization, electrochemical impedance (EI), Tafel polarization, scanning electron microscope (SEM) and FT-IR methods. The result of weight loss study shows that the corrosion inhibition efficiency (IE) is directly proportional to the concentration of the inhibitor and inversely proportional to the temperature. Electrochemical study proved that the inhibitor acts as a mixed type inhibitor. SEM shows the formation of a protective film of the inhibitor on the mild steel. The IR data also provide evidence for the anticorrosion effect of the inhibitor.  相似文献   

20.
The inhibition effect of 1,3,5-triazinyl urea derivatives, viz. 1-(4-cyclohexyl amino)-6-(3,4-dimethoxy phenyl ethyl amino)-1,3,5-triazin-2-yl)-3-p-tolyurea (4-CADT) and 1-(4-chlorophenyl)-3-(4-(cyclohexyl amino)-6-(3,4-dimethoxy phenyl ethyl amino)-1,3,5-triazin-2-yl) urea (4-CCADT), were evaluated against mild steel (MS) corrosion in 1 N HCl solutions using conventional weight loss, potentiodynamic polarization, linear polarization, electrochemical impedance spectroscopy, and scanning electron microscopic studies. The losses in weights of MS samples have proved that both were efficient corrosion inhibitors. The mixed mode of inhibition was confirmed by electrochemical polarizations and the results of electrochemical impedance spectroscopy have shown the changes in the impedance parameters like charge transfer resistance and double-layer capacitance to confirm the strong adsorption on the MS surface inhibition of MS. The changes in concentrations of the inhibitors were due to the adsorption of the molecules evaluated leading to the formation of a protective layer on the surface of MS. The inhibition action of these compounds was assumed to occur via adsorption on the steel surface through the active centers contained in the molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号