首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
对一系列高聚物进行了单轴拉伸过程中声发射的观察,包括玻璃态高聚物、结晶高聚物、共聚物、共混高聚物和一种交联橡胶。非晶态高聚物拉伸时声发射次数很少,伴随银纹和微裂缝的产生而出现。结晶高聚物在屈服成颈时出现强的声发射,在颈部拉伸的初期声发射较少或不出现,拉伸到接近试件断裂前声发射强烈,次数急剧增多。相同高聚物但试件加工成形历史不同会在声发射上得到反映。交联的顺丁橡胶拉伸时声发射很弱,但可以观察到,在拉力-形变曲线开始偏离线性后出现,没有Kaiser效应。共混高聚物拉伸时声发射很多。高耐冲击共混接枝塑料在断裂前不出现强烈的声发射。如试样和试件加工成形条件相同,声发射现象的重演性是相当好的。  相似文献   

2.
对高聚物的声发射做了进一步的实验观察。玻璃态高聚物在拉伸屈服以前的声发射有Kaiser效应,但在高弹态则不然。非晶态高聚物从玻璃态到高弹态的转变,玻璃态拉伸时在屈服附近出现声发射,高弹态时声发射要少而弱得多,只在高弹拉伸的断裂前出现声发射。非晶态、晶态高聚物或共混高聚物在突然升温到100℃时有声发射,但在突然降温到-60℃时却不出现声发射,这可能也说明声发射与高聚物试样内形成空洞有关。一种聚丙烯树脂在不同注射成形工艺条件下所得试件,在拉伸时的声发射行为可反映加工成形的好坏,成形好的声发射少得多。  相似文献   

3.
超高分子量聚乙烯凝胶膜超高取向过程的几个不同阶段   总被引:2,自引:0,他引:2  
通过X射线衍射、平板照相、扫描电镜等方法观测超高分子量聚乙烯凝胶/结晶膜取向过程中的结构形态变化,并根据PE片晶分子动力学模拟结果,提出UHMWPE凝胶膜在热拉伸取向过程中明显存在3个不同阶段,即:初期片晶转动或滑移,b轴优先垂直于拉伸方向取向;随着拉伸比增大,片晶的c轴平等于伸方向,同时,分子链的解折叠开始,部分非晶链也进入伸直链区取向,当拉伸比达到极限倍率时,分子链已经接近完全伸展成为比较刚直  相似文献   

4.
本文测定了单边裂纹聚苯乙烯(PS)样品在拉伸加载时的声发射以及声发射事件按幅度、脉宽、计数和位置的分布,实验证实,单边裂纹PS样品拉伸时的声发射来源于裂纹端部银纹区的变形、断裂和扩展,大部分总振铃计数由裂纹亚临界和失稳扩展引起,在重复加载时观察到PS声发射的Kaiser效应。  相似文献   

5.
研究了聚芳醚酮(PEK-C)在200℃下长时间放置过程中拉伸断裂行为的变化.通过应力-应变实验、断面形貌观察及去老化现象的研究证实,200℃下长时间放置后的PEK-C的拉伸断裂行为,发生韧性-脆性转变,发生这一转变的时间约在589小时左右.伴随199℃下的拉伸过程中出现的去老化现象,决定于材料发生剪切屈服形变的能力,与韧性-脆性断裂行为转变有着本质的联系.  相似文献   

6.
非晶聚合物塑性变形机理主要包括银纹化和剪切屈服[1 ,2 ] .银纹化是链段局部排列疏松区域或缺陷在膨胀应力作用下成为银纹核 ,引发银纹 ,银纹 本体界面应变软化 ,银纹微纤拉伸的应变硬化过程 ,使得聚合物银纹微纤沿拉伸方向取向 ,伴随这一过程聚合物的体积增大[3] .剪切屈服是分子链沿拉伸方向的流动以及分子链间的滑移过程 ,这一过程使聚合物形状改变而体积不变 .聚合物的形变机理与聚合物的内在性质如临界缠结分子量 ,缠结密度或硬度等有关[4] .聚苯基单醚喹啉是一种高性能的芳杂环聚合物 ,它的玻璃化转变温度是 2 98℃ ,它具有耐高温…  相似文献   

7.
PBT/PET共混体系的协同效应   总被引:1,自引:0,他引:1  
PBT、PET具有良好相容性,且两种聚合物分子链间存在相互作用,它们的共混体系在熔体降温结晶过程中以及溶液中均表现出协同效应。虽然PBT、PET在共混体系中各自形成晶区,但熔体降温结果过程中只能观察到一个结晶放热峰,当PBT/PET共混物中两组份分子链段数目相近时,熔体降温结晶峰温较低,峰形变宽,共混体系的结晶程度降低在溶液中两组份分子链段数目相近时,共混物特性粘度(η)值最大,分子链的均方根末端  相似文献   

8.
不同结晶状态的聚丙烯材料的声发射研究   总被引:1,自引:0,他引:1  
用MISTRAS2001声发射监测系统对加入一定量成核剂(0-2.0%)的聚丙烯材料进行冲击过程声发射研究,研究记录了冲击过程的应力-时间曲线。结果表明,在成核剂加入量为0.4%时,冲击强度出现极大值,与之相对应,其声发射信号最为丰富,声发射振铃计数最高,裂纹扩展阶段的声发射信号占主导地位,随成核剂含量增大,材料冲击断裂过程中裂纹萌生阶段AE计数呈上升趋势,而裂纹扩展阶段的AE计数呈先上升后下降的趋势,同时裂纹萌生功和裂纹扩展功也呈现相同的变化趋势,与断面特征区特征参量的变化相对应。  相似文献   

9.
α’-晶型聚乳酸(PLA)膜被制备和单轴拉伸.通过凝胶渗透色谱仪(GPC)、全反射红外光谱(ATR-IR)、差示扫描量热仪(DSC),X射线衍射(XRD)及Raman光谱等测试技术研究了拉伸温度梯度变化对α’-晶型PLA膜的分子量及其分布、分子链构象、结晶度、晶型转变和取向行为的影响.在恒定拉伸速度与应变下,拉伸温度对PLA膜的应力-应变曲线,特别是屈服强度、拉伸模量产生了较大的影响,其值随拉伸温度的增加而降低.GPC测试结果表明,在不同的温度下拉伸后,PLA会发生一定程度的降解,分子量降低;ATR-IR,XRD,DSC和Raman光谱测试结果表明,在不同的温度下拉伸后α’-型PLA没有发生晶型的转变,即没有由α’-晶体转变为α-或β-晶体.结果表明PLA的结晶度、分子链取向程度强烈依赖于拉伸温度:当拉伸温度低于100℃时,α’-型PLA膜的结晶度与沿着拉伸方向的变形程度随拉伸温度的增加而增加,分子链的高度取向诱导了PLA结晶;当拉伸温度超过100℃后,PLA的分子链沿着拉伸方向上的有序度与结晶度将降低.  相似文献   

10.
《化学学报》2012,70(6)
a'-晶型聚乳酸(PLA)膜被制备和单轴拉伸.通过凝胶渗透色谱仪(GPC)、全反射红外光谱(ATR-IR)、差示扫描量热仪(DSC),X射线衍射(XRD)及Raman光谱等测试技术研究了拉伸温度梯度变化对a'-晶型PLA膜的分子量及其分布、分子链构象、结晶度、晶型转变和取向行为的影响.在恒定拉伸速度与应变下,拉伸温度对PLA膜的应力.应变曲线,特别是屈服强度、拉伸模量产生了较大的影响,其值随拉伸温度的增加而降低.GPC测试结果表明,在不同的温度下拉伸后,PLA会发生一定程度的降解,分子量降低;ATR-IR,XRD,DSC和Raman光谱测试结果表明,在不同的温度下拉伸后a’-型PLA没有发生晶型的转变,即没有由a'-晶体转变为a-或β-晶体.结果表明PLA的结晶度、分子链取向程度强烈依赖于拉伸温度:当拉伸温度低于100℃时,a’-型PLA膜 的结晶度与沿着拉伸方向的变形程度随拉伸温度的增加而增加,分子链的高度取向诱导了PLA结晶;当拉伸温度超过100℃后,PLA的分子链沿着拉伸方向上的有序度与结晶度将降低.  相似文献   

11.
Air‐plasma‐sprayed (APS) thermal barrier coatings (TBCs) under the conditions of without TBC, as‐sprayed and preoxidized, were tested under tensile loading, and their acoustic emission (AE) responses were monitored. AE parameters including event count, amplitude, and frequency spectrum realized by Fast Fourier Transformation (FFT) were analyzed for information regarding the fracture behavior of TBCs. On the basis of AE behavior, the fracture process of TBCs and corresponding cracking patterns in TBCs subjected to tensile tests were evaluated. AE results also showed that the bondcoating oxidation not only promotes the cracking but also changes the failure mode in TBCs. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
The acoustic emission (AE) method was used to monitor the tensile damage in a 3D braiding composite shaft. The 3D braiding composite shaft was manufactured via Vacuum Assisted Resin Transfer Moulding (VARTM) and the tensile experiment was conducted accompanied by AE monitoring. The AE signals were analyzed using the wavelet transformation for time-frequency analysis. The characteristic values of the AE signals were decomposed by the principal component analysis (PCA). The damage mode of the 3D braiding composite shaft under tension was identified and classified by the fuzzy clustering method (FCM). The results showed that the AE method could monitor the damage evolution process of the 3D braiding composite shaft under tension and the FCM combined with the PCA effectively divided the damage mode of the 3D braiding composite shaft. The results will provide an effective method for health monitoring of the 3D braiding composite shaft within engineering.  相似文献   

13.
Interfacial and microfailure properties of carbon fiber/epoxy composites were evaluated using both tensile fragmentation and compressive Broutman tests with an aid of acoustic emission (AE). A monomeric and two polymeric coupling agents were applied via the electrodeposition (ED) and the dipping applications. A monomeric and a polymeric coupling agent showed significant and comparable improvements in interfacial shear strength (IFSS) compared to the untreated case under both tensile and compressive tests. Typical microfailure modes including cone-shaped fiber break, matrix cracking, and partial interlayer failure were observed under tension, whereas the diagonal slipped failure at both ends of the fractured fiber exhibited under compression. Adsorption and shear displacement mechanisms at the interface were described in terms of electrical attraction and primary and secondary bonding forces. For both the untreated and the treated cases AE distributions were separated well in tension, whereas AE distributions were rather closely overlapped in compression. It might be because of the difference in molecular failure energies and failure mechanisms between tension and compression. The maximum AE voltage for the waveform of either carbon or large-diameter basalt fiber breakages in tension exhibited much larger than that in compression. AE could provide more likely the quantitative information on the interfacial adhesion and microfailure.  相似文献   

14.
Acoustic Emission (AE) was investigated in order to monitor in real time the Mullins effect. Cyclic uniaxial tensile tests were carried out on two different natural rubbers. Different behaviour is revealed depending on whether or not the material undergoes the Mullins effect. The acoustic emission activity is very important during the first cycle, but decreases gradually with increasing number of cycles, when the Mullins effect is observed. On the contrary, when there is no Mullins effect no significant AE activity is recorded.  相似文献   

15.
Interfacial adhesion and nondestructive behavior of the electrodeposited (ED) carbon fiber reinforced composites were evaluated using the electro-micromechanical technique and acoustic emission (AE). Interfacial shear strength (IFSS) of the ED carbon fiber/epoxy composites was higher than that of the untreated case. This might be expected because of the possible chemical and hydrogen bonding based on an electrically adsorbed polymeric interlayer. Logarithmic electrical resistivity of the untreated single-carbon fiber composite increased suddenly to infinity when the fiber fracture occurred, whereas that of the ED composite increased relatively broadly up to infinity. This may be due to the retarded fracture time as a result of the enhanced IFSS. In single- and 10-carbon fiber composites, the number of AE signals coming from the interlayer failure of the ED carbon fiber composite was much larger than that of the untreated composite. As the number of each first fiber fracture increased in the 10-carbon fiber composite, the electrical resistivity increased stepwise, and the slope of logarithmic electrical resistance increased. In the three-graphite filament composite with a narrow 1 time inter-filament distance, the total numbers of the filament fracture and the IFSS were smaller than those of the wider 5 times case. This might be because the interacting fracture energy caused by a filament break could affect the adjacent filaments. Copyright 2001 Academic Press.  相似文献   

16.
In this paper we have presented the results of acoustic emission (AE) during non-isothemal crystallization of polypropylene (PP) melt with mean cooling rate 4℃/min, and discussed the effects of molecular weight (MW) on AE activity. It is shown that the amount of AE ring-down counts during whole crystallization of PP depends on the MW strongly.The copious AE bursts have been observed at the late stage of PPcrystallization. AE bursts are caused by cracking, crazing and cavitation between spherulites and inside spherulites.  相似文献   

17.
Self‐reinforced composites based on commercial polypropylene (PP) woven fabrics and a random PP copolymer modified with quartz were obtained by film stacking. The effect of the incorporation of quartz on the materials fracture and failure behavior was studied through uniaxial tensile tests and quasi‐static fracture experiments. Acoustic emission analysis was also performed in situ in the tensile tests. A higher consolidation quality was obtained for the composites containing quartz. In the composite with random PP modified with 5 wt% quartz, the higher consolidation and the better dispersion of quartz particles positively impacted on the materials tensile and fracture behavior. From the results of acoustic emission analysis, fiber fracture appears as the dominant failure mechanism in the investigated composites. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
Comparison of interfacial properties and microfailure mechanisms of oxygen-plasma treated poly(p-phenylene-2,6-benzobisoxazole (PBO, Zylon) and poly(p-phenylene terephthalamide) (PPTA, Kevlar) fibers/epoxy composites were investigated using a micromechanical technique and nondestructive acoustic emission (AE). The interfacial shear strength (IFSS) and work of adhesion, Wa, of PBO or Kevlar fiber/epoxy composites increased with oxygen-plasma treatment, due to induced hydrogen and covalent bondings at their interface. Plasma-treated Kevlar fiber showed the maximum critical surface tension and polar term, whereas the untreated PBO fiber showed the minimum values. The work of adhesion and the polar term were proportional to the IFSS directly for both PBO and Kevlar fibers. The microfibril fracture pattern of two plasma-treated fibers appeared obviously. Unlike in slow cooling, in rapid cooling, case kink band and kicking in PBO fiber appeared, whereas buckling in the Kevlar fiber was observed mainly due to compressive and residual stresses. Based on the propagation of microfibril failure toward the core region, the number of AE events for plasma-treated PBO and Kevlar fibers increased significantly compared to the untreated case. The results of nondestructive AE were consistent with microfailure modes.  相似文献   

19.
Based on the information theory and multifractals viewpoint, the information dimension D_1 of acoustic emission (AE) of rock for marble, gabbro and sandstone in a laboratory condition and seismic activities before and after some large earthquakes are studied. The results show that there is a dimension reduction process before the failure of rock and before the occurrence of large earthquakes. The curves of D_1 determined during the process have a wider non-scaling range. Moreover, the non-scaling range became narrow when rock was close to failure fracture and large earthquake was just to happen. This shows that the system has instable critical behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号