首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
《先进技术聚合物》2018,29(1):111-120
In the present paper, different self‐reinforced polypropylene (PP) composites based on low‐cost commercial woven (w) and non‐woven (nw) fabrics were obtained. Hot compaction (HC) and film stacking (FS) followed by compression molding were used to prepared the composites. The fracture and failure behavior of the different materials was determined under different testing conditions through quasi‐static uniaxial tensile tests, Izod impact experiments and by means of fracture mechanics tests on mode I double‐edge deeply notched tensile specimens. In the case of the composite obtained by film stacking + compression molding (rPP/nw/w‐FS) and the hot‐compacted composite (nw/w‐HC) containing simultaneously woven and non‐woven fabrics, the acoustic emission technique was applied in situ in the tensile tests to determine their consolidation quality and to identify the failure mechanisms responsible for their fracture behavior. It was observed that both composites exhibited relatively similar high consolidation quality. However, the hot‐compacted composite presented a more uniform distribution of failure mechanisms (debonding and fiber fracture) than the film‐stacked composite. The hot‐compacted composite containing both types of reinforcements exhibited the best combination of mechanical (tensile, impact, and fracture) properties. Therefore, this composite appeared as the most promising for structural applications among the different composites investigated.  相似文献   

2.
A series of poly(propylene) silica‐grafted‐hyperbranched polyester nanocomposites by grafting the modified hyperbranched polyester (Boltorn? H20), possessing theoretically 50% end carboxylic groups and 50% end hydroxyl groups, which endcapped with octadecyl isocyanate (C19), onto the surface of SiO2 particles (30 nm) through 3‐glycidoxy‐propyltrimethoxysilane (GPTS) was prepared. The effect of silica‐grafted‐modified Boltorn? H20 on the mechanical properties of polypropylene (PP) was investigated by tensile and impact tests. The morphological structure of impact fracture surface and thermal behavior of the composites were determined by scanning electron microscopy (SEM) and differential scanning calorimetry (DSC), respectively. The melt viscosity of composites was investigated by melt flow index (MFI). The obtained results showed that: (1) the modified Boltorn? H20 was successfully grafted onto the SiO2 surface confirmed by FT‐IR and X‐ray photoelectron spectroscopy (XPS) analysis; (2) the incorporation of silica‐grafted‐modified Boltorn? H20 (3–5 wt% SiO2) greatly enhanced the notched impact strength as well the tensile strength of the composites; (3) the incorporation of silica‐grafted‐modified Boltorn? H20 had no influence on the melting temperature and crystallinity of PP phase; (4) the MFI of PP composites increased when the silica‐grafted‐modified Boltorn? H20 particles were added compared with PP/SiO2 or PP/SiO2‐GPTS composites. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
The impact behaviour of self-reinforced polypropylene (PP) composites was studied. α and β polymorphs of isotactic PP homopolymer and random copolymer (with ethylene) were used for matrix materials, whereas the reinforcement was a fabric woven from highly stretched split PP yarns. The composite sheets were produced by the film-stacking method and consolidated by hot pressing at 5 and 15 °C above the melting temperature (Tm) of the matrix-giving PP grade. The composite sheets were subjected to static tensile, dynamic falling weight impact and impact tensile tests at room temperature. Dynamic mechanical thermal analysis (DMTA) was also performed on the related composites and their constituents. The results indicated that the β-modification of the PP homopolymer is more straightforward than that of the PP copolymer. Stiffness and strength usually increased while the toughness (tensile impact strength, perforation impact energy) decreased with increasing temperature of consolidation. This was assigned to differences in the failure mode based on fractographic results.  相似文献   

4.
Hybrid composites consisting of isotactic poly(propylene) (PP), sisal fiber (SF), and maleic anhydride grafted styrene‐(ethylene‐co‐butylene)‐styrene copolymer (MA‐SEBS) were prepared by melt compounding, followed by injection molding. The melt‐compounding torque behavior, thermal properties, morphology, crystal structure, and mechanical behavior of the PP/MA‐SEBS/SF composites were systematically investigated. The torque test, thermogravimetric analysis, differential scanning calorimetric, and scanning electron microscopic results all indicated that MA‐SEBS was an effective compatibilizer for the PP/SF composites, and there was a synergism between MA‐SEBS and PP/SF in the thermal stability of the PP/MA‐SEBS/SF composites. Wide‐angle X‐ray diffraction analysis indicated that the α form and β form of the PP crystals coexisted in the PP/MA‐SEBS/SF composites. With the incorporation of MA‐SEBS, the relative amount of β‐form PP crystals decreased significantly. Mechanical tests showed that the tensile strength and impact toughness of the PP/SF composites were generally improved by the incorporation of MA‐SEBS. The instrumented drop‐weight dart‐impact test was also used to examine the impact‐fracture behavior of these composites. The results revealed that the maximum impact force (Fmax), impact‐fracture energy (ET), total impact duration (tr), crack‐initiation time (tinit), and crack‐propagation time (tprop) of the composites all tended to increase with an increasing MA‐SEBS content. From these results, the incorporation of MA‐SEBS into PP/SF composites can retard both the crack initiation and propagation phases of the impact‐fracture process. These prolonged the crack initiation and propagation time and increased the energy consumption during impact fracture, thereby leading to toughening of PP/MA‐SEBS/SF composites. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1214–1222, 2002  相似文献   

5.
Due to the economic importance of polypropylene (PP) and polyethylene terephthalate (PET), and the large amount of composites made with PP matrix and recycled PET as reinforcing material; an investigation was performed regarding the mechanical and thermal behavior of PP composites containing recycled polyethylene terephthalate fibers (rPET). Interfacial adhesion between the two materials was achieved by adding a compatibilizer, maleic anhydride grafted polypropylene, PP-g-MA. Mechanical behavior was assessed by tensile, flexural, impact and fatigue tests, and thermal behavior by HDT (Heat Deflection Temperature). Fractured surfaces and fiber were investigated by scanning electron microscopy. Multiple regression statistical analysis was performed to interpret interaction effects of the variables. Tensile strength, tensile modulus, flexural strength, flexural modulus and HDT increased after rPET fiber incorporation while strain at break, impact strength and fatigue life decreased. Addition of compatibilizer increased tensile strength, flexural strength and flexural modulus, fatigue life and HDT while tensile modulus, strain at break and impact strength decreased. However, at low fiber content, the impact strength increased, probably due to nucleation effects on PP.  相似文献   

6.
Polylactic acid (PLA) was used as partial replacement for conventional thermoplastic matrix, new composites comprising cellulose, polypropylene (PP), and PLA being realized. In order to obtain a compatible interface between cellulosic pulp and polymeric matrix, two chemical modifications of cellulose with stearoyl chloride and toluene di‐isocyanate (TDI) were performed, structural changes being evidenced by X‐ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The composite materials were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, dynamic scanning calorimetry, impact, tensile and melt rheological tests, surface tension, and dynamic vapor sorption. Because promising results for impact strength and Young modulus were recorded when replacing 15% of PP with PLA in blends of PP with the same cellulosic pulp load, the aim of our study was to assess the behavior to accelerate weathering of composites comprising PP, cellulosic pulp, and PLA. Although the slight decrease in the mechanical properties was recorded after accelerated weathering, the use of functionalized cellulose successfully prevented the deterioration of surface materials, especially for composite comprising stearoyl chloride treated cellulose pulp. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
The effect of filler types of mica and talc on the oscillatory shear rheological properties, mechanical performance, and morphology of the chemically coupled polypropylene composites is studied in this work. The Maleic Anhydride grafted Polypropylene (MAPP) was used as an adhesion promoter for coupling mineral particles with the polypropylene matrix. The samples were prepared by a co‐rotating, L/D = 40, 25 mm twin screw extruder. The tensile tests carried out on the injection molded samples showed a reinforcing effect of talc up to 20 wt% on the Polypropylene (PP). The tensile strength of PP‐mica composites showed a slight decrease at all percentages of mica. The effect of chemical coupling by using MAPP on the tensile strength was more pronounced in increasing the tensile strength for PP‐mica than PP‐talc composites. The complex viscosity curve of pure PP and the composites, showed a Newtonian plateau (η0) up to 30 wt% at low frequency terminal zone. By increasing the filler content to 40 and 50 wt%, the complex viscosity at very low shear rates sharply increased and showed yield behavior that can be due to the formation of filler particles networks in the melt. At the optimum amount of coupling agent, a minimum in cross over frequency curve against MAPP content is observed. The optimum amount of coupling agent for PP‐talc composites is about 1.5%, and about 3% for PP‐mica formulations. The analysis of viscosity behavior at power‐law high region, revealed the more shear thinning effect of mica than talc on the PP matrix resin. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
This study deals with the silane crosslinking and intumescent flame retardation of polypropylene/ethylene‐propylene‐diene copolymer (PP/EPDM) elastomers. The effect of silane crosslinking on the flame retardancy of the PP/EPDM composites containing melamine phosphate (MP) and dipentaerythritol (DPER) was studied by limiting oxygen index, UL 94 and cone calorimetry tests. The chemical composition of the silane crosslinked and flame retarded PP/EPDM composites treated at different temperatures was studied by X‐ray photoelectron spectroscopy and real time Fourier transform infrared (FTIR) spectrometry. Thermal decomposition and crystallization behavior of the PP/EPDM composites were investigated using thermogravimetric analysis and differential scanning calorimetry, respectively. Moreover, the mechanical properties of the composites were also studied. It is found that the flame retardancy, mechanical properties, and thermal decomposition behavior of the composites are influenced by silane grafting and crosslinking. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
The intumescent flame retardant (IFR) filled polypropylene (PP) composites were prepared using a twin‐screw extruder. The tensile and impact fracture behavior of the composites were measured at room temperature. It was found that the Young's modulus increased roughly, while the tensile strength decreased slightly with increasing the IFR weight fraction; the toughening effect of the filler on the PP resin was significant. Both the V‐notched Izod impact strength and the V‐notched Charpy impact strength of the PP/IFR composites showed a nonlinear increase with increasing the filler weight fraction (φf) as φf was less than 20%, then it decreased. The limited oxygen index of the composites increases nonlinearly with increasing φf. The relationship between them obeyed a quadratic equation. The impact fracture surface was observed by means of a scanning electronic microscope to understand the toughening mechanisms for the composite systems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
微层共挤出(PP+EVOH)/PP阻隔材料的结构与性能研究   总被引:3,自引:0,他引:3  
李婷  李姜  张玉清  杜芹  郭少云 《高分子学报》2009,(12):1226-1231
利用微层共挤出技术制备了具有交替层状结构的(PP+EVOH)/PP复合材料,其中PP为聚丙烯,EVOH为乙烯-乙烯醇其聚物.通过扫描电子显微镜观察、气体渗透实验、差示扫描量热仪分析以及力学性能测试研究了微层共挤出复合材料的形态结构及其对复合材料气体阻隔性能、力学性能以及结晶性能的影响.研究结果表明,通过微层共挤出技术,PP层和(PP+EVOH)层沿挤出方向交替排列,EVOH在PP基体中的的分散形态由零维球形变为一维纤维状,进而演变为二维片状.这些形态导致微层共挤出材料的氮气渗透系数和断裂伸长率较普通共混物分别下降了两个数量级和提高了27倍,并且显著影响其结晶行为.当层数超过64层后,由于PP层减薄,界面增多,EVOH不仅对(PP+EVOH)层中PP相存在结晶成核作用,而且对PP层也有结晶成核作用.  相似文献   

11.
An intumescent flame retardant system composed of ammonium polyphosphate (APP) and pentaerythritol (PER) was used for flame retarding ethylene–propylene–diene‐modified elastomer (EPDM)/polypropylene (PP) blends. Cerium phosphate (CeP) was synthesized and the effect on flame retardancy and thermal stability of EPDM/PP composites based on intumescent flame retardant (IFR) were studied by limiting oxygen index (LOI), UL‐94, and thermogravimetic analysis (TGA), respectively. Scanning electron microscopy (SEM) and Fourier transform infrared spectrometry (FTIR) were used to analyze the morphological structure and the component of the residue chars formed from the EPDM/PP composites, and the mechanical properties of the materials were also studied. The addition of CeP to the EPDM/PP/APP/PER composites gives better flame retardancy than that of EPDM/PP/APP/PER composites. TGA and RT‐FTIR studies indicated that an interaction occurs among APP, PER, and EPDM/PP. The incorporation of CeP improved the mechanical properties of the materials. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Polypropylene/organoclay (PP/OMMT) nanocomposites were prepared in a twin-screw corotating extruder using two methods. The first method was the dilution of commercial (PP/50% Nanofil SE3000) masterbatch in PP (or PP with commercial flame retardant). The second method consists of two stages was the extrusion of maleic anhydride grafted polypropylene (PP-g-MAH) with commercially available organobentonite masterbatch in first stage and dilution of the masterbatch in PP (or PP with commercial flame retardant) in second stage. XRD results showed no intercalation in composites obtained from commercial masterbatch without compatibilizer and semi - delamination for compatibilized systems. Tensile tests revealed that nanocomposites with 5% of organoclay have a slightly higher tensile modulus and tensile strength than pristine PP, however addition of the commercial flame retardant (FR) reduces mechanical parameters to roughly the level of those for neat PP. PP/OMMT composites have approx. 25% higher oxygen index than pristine PP, and this changes slightly after the addition of FR. The cone calorimeter tests showed a decrease of a heat release rate (HRR) and a mass loss rate (MLR) after the addition of FR.  相似文献   

13.
In this work the deformation and fracture behavior of PP/EVOH blends compatibilized with ionomer Na+ at room and low temperature was studied. Uniaxial tensile tests on dumb-bell samples and fracture tests on single-edge notched bending (SENB) specimens were performed for 10 wt.% and 20 wt.% EVOH blends with different ionomer content at 23 °C and −20 °C. The incorporation of EVOH to PP led to less ductile materials in tension as judged by the lower values of the ultimate tensile strain displayed by all PP/EVOH blends in comparison to neat PP. In contrast, the ionomer Na+ addition partially counteracted this effect. The compatibilizing effect of ionomer Na+ was also evident in fracture results since higher values of the fracture parameter were obtained for the ternary blends. SEM observations also confirmed this effect. On the other hand, PP/EVOH blends exhibited different fracture behavior with test temperature. All blends showed “pseudo stable” behavior at room temperature characterized by apparently stable crack growth that could not be externally controlled. On the contrary, blends behaved as semi-brittle at −20 °C with some amount of stable crack growth preceding unstable brittle fracture. Finally, irrespectively of the temperature or the ionomer content all PP/EVOH blends exhibited more ductile fracture behavior with a higher tendency to stable crack propagation than neat polypropylene.  相似文献   

14.
A modified nano-calcium carbonate (R-CCR) was prepared by coating a layer of unsaturated hydroxylfatty acid on the surface of CCR powders using a solid state method; the latter were commercial nano-CaCO3 modified with stearic acid. FTIR studies indicate that the modifier is combined on the surface of CaCO3. PP/EPDM/nano-CaCO3 ternary composites were prepared by a melt-mixing method. SEM and TEM were utilized to examine the morphology of the composites. The tensile fractured surface of PP/EPDM/R-CCR showed a fibroid morphology and large-scale yield deformation. The impact fractured surface showed that the amount of cavities in the PP/EPDM/R-CCR system was increased, however their size diminished obviously. R-CCR particles were dispersed uniformly in the PP matrix, and their compatibility was distinctly improved as compared to CCR when the amount of R-CCR was 15 h−1. The tensile strength remained nearly constant (reduced from 27.6 MPa to 27.5 MPa), while the impact strength increased from 9.6 kJ/m2 to 15.4 kJ/m2 as CCR was replaced by R-CCR. Meanwhile, the bending strength and bending modulus also increased correspondingly. Furthermore, the impact strength of PP/EPDM/R-CCR was maintained at a high level (15.4 kJ/m2), which was more than the sum of that of PP/EPDM and PP/R-CCR (6.6 kJ/m2 and 6.1 kJ/m2 respectively). This indicates that the R-CCR and EPDM have a significant synergistic toughening effect on PP while maintaining the strength and modulus of virgin PP. Both the storage modulus G′ and loss modulus G″ of PP/EPDM and PP/EPDM/R-CCR composites increase with increasing frequency, but the values of G′ and G″ of the tertiary composite are relatively higher than those of the binary system. The loss factor and viscosity decrease with increasing frequency, but there is little difference between tertiary and binary composites. The apparent viscosity η of the tertiary system containing R-CCR is lower than that of the tertiary system containing CCR and virgin PP. The viscosity of the composites sig-nificantly decreases with increasing shear rate. The mea-sured mechanical properties of the composites indicate that replacing CCR with R-CCR for binary composites could simultaneously enhance the toughness and strength of PP. __________ Translated from Acta Polymerica Sinica, 2008, 4 (in Chinese)  相似文献   

15.
Polyamide 6/polypropylene (PA6/PP = 70/30 parts) blends containing 4 phr (parts per hundred resin) of organically modified clay (organoclay) toughened with maleated styrene-ethylene-butylene-styrene (SEBS-g-MA) were prepared by melt compounding using co-rotating twin-screw extruder followed by injection molding. X-ray diffraction (XRD) and transmission electron microscope (TEM) were used to characterize the structure of the nanocomposites. The mechanical properties of the nanocomposites were determined by tensile, flexural, and notched Izod impact tests. The single edge notch three point bending test was used to evaluate the fracture toughness of SEBS-g-MA toughened PA6/PP nanocomposites. Thermal properties were studied by using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). XRD and TEM results indicated the formation of the exfoliated structure for the PA6/PP/organoclay nanocomposites with and without SEBS-g-MA. With the exception of stiffness and strength, the addition of SEBS-g-MA into the PA6/PP/organoclay nanocomposites increased ductility, impact strength and fracture toughness. The elongation at break and fracture toughness of PA6/PP blends and nanocomposites were increased with increasing the testing speed, whereas tensile strength was decreased. The increase in ductility and fracture toughness at high testing speed could be attributed to the thermal blunting mechanism in front of crack tip. DSC results revealed that the presence of SEBS-g-MA had negligible effect on the melting and crystallization behavior of the PA6/PP/organoclay nanocomposites. TGA results showed that the incorporation of SEBS-g-MA increased the thermal stability of the nanocomposite.  相似文献   

16.
Two grades of isotactic polypropylene (homopolymer and block copolymer) were filled with magnesium and aluminium hydroxides, and studied focusing the mechanical and fracture characteristics of the composites. As expected, dispersion of such fillers in PP resulted in improved stiffness and reduced tensile yield strength. By one hand, the composites fracture resistance was characterised at low strain rate applying the J‐integral concept; the resistance to crack growth initiation (JIC) was found decreasing as the Mg(OH)2 concentration was raised in the copolymer PP matrix. By the other hand, the linear‐elastic fracture mechanics (LEFM) parameters were determined by means of instrumented impact tests at 1 m/s on the homopolymer PP filled with uncoated Al(OH)3 particles. The higher the Al(OH)3 mean particle size, the lower the composite fracture energy (GIC). In the opposite, with commercial surface‐coated filler grades it was not possible to achieve LEFM conditions to characterise the fracture toughness of filled PP at 1 m/s, because the Mg(OH)2 surface coating, which is applied in practice to improve the melt processing, acts increasing the composite plasticity and reducing the tensile yield strength.  相似文献   

17.
An experimental study was focused on investigation of the failure properties of plain woven glass/epoxy composites under off-axis and biaxial tension loading conditions. Four fibre orientations (0°, 15°, 30° and 45° with respect to the load direction) were considered for off-axis tests and two biaxial load ratios for biaxial tests to study failure characteristics and mechanism. Four classical polynomial failure criteria - Tsai-Hill, Hoffman, Tsai-Wu and Yeh-Stratton - were analysed comparatively to predict off-axis and biaxial failure strength of the composites. For failure prediction of the plain woven composites under multiaxial tension loads, the Tsai-Wu criterion was modified by introducing an interaction coefficient F12 obtained from 45° off-axis or biaxial tension tests and the Yeh-Stratton criterion was modified with the interaction coefficient B12 = 0 or obtained from the biaxial tension test. The former criterion was found to have higher accuracy. Finally, according to macroscopic and microscopic studies, the failed specimens showed mostly distinct failure with a specific fracture orientation, mainly exhibiting fibre or fabric tensile fracture mode and a combination of matrix cracking and delamination, both in off-axis and cruciform samples.  相似文献   

18.
The objectives of this paper are to understand the crystallization behavior of polypropylene(PP)composites with surface modified tetra-needle-shaped zinc oxide whisker(T-ZnOw).T-ZnOw was surface modified with different coupling agents,such as silane coupling agents(KH-550,KH-560)and titanate coupling agent(NDZ-105),in order to improve the compatibility between PP and T-ZnOw.DSC and POM were used to characterize the melt and crystallization behavior and the crystalline structures of the composites,respectively.The results show that the surface modified T-ZnOw acts as a nucleating agent of PP crystallization,depending on the coupling agent used for modification.KH-550 and KH-560 have more apparent role in improving the interfacial interaction than NDZ-105 and induce PP crystallization at higher temperature and with smaller spherulites size.The results also suggest that the crystallization behavior depends on not only the content of coupling agent,but also the content of the surface modified T-ZnOw used in the composites.  相似文献   

19.
Mechanical properties of unidirectional (UD) and woven fabric glass/epoxy composites under off-axis tensile loading were experimentally investigated. A number of off-axis tests considering different fibre orientations were performed to study the character and failure mechanisms of the composite laminates. The experimental results indicated that both off-axis elastic moduli and strength degrade with increasing off-axis angle in all cases, and the woven fabric composites present nonlinear stress-strain behaviour under off-axial tension loading. The Tsai-Wu criteria used for failure analysis of the UD and woven fabric composites were compared and discussed, especially considering different values of interaction coefficient F12. The prediction results demonstrated that the Tsai-Wu criterion can be used successfully to analyse failure properties of the woven fabric composites under multiaxial stress conditions, where the criterion with the modified coefficient F12 obtained from the 45° off-axial tension tests is better and has higher accuracy. Finally, the specific failure modes were compared in the UD and woven fabric composites. The selected fracture surfaces were also observed by scanning electron microscopy (SEM), and the corresponding failure mechanisms of the woven fabric composites under off-axis tensile loading were identified.  相似文献   

20.
Impact‐modified polypropylene (PP)/vermiculite (VMT) nanocomposites toughened with maleated styrene–ethylene butylene–styrene (SEBS‐g‐MA) were compounded in a twin‐screw extruder and injection‐molded. VMT was treated with maleic anhydride, which acted both as a compatibilizer for the polymeric matrices and as a swelling agent for VMT in the nanocomposites. The effects of the impact modifier on the morphology and the impact, static, and dynamic mechanical properties of the PP/VMT nanocomposites were investigated. Transmission electron microscopy revealed that an exfoliated VMT silicate layer structure was formed in ternary (PP–SEBS‐g‐MA)/VMT nanocomposites. Tensile tests showed that the styrene–ethylene butylene–styrene additions improved the tensile ductility of the (PP–SEBS‐g‐MA)/VMT ternary nanocomposites at the expense of their tensile stiffness and strength. Moreover, Izod impact measurements indicated that the SEBS‐g‐MA addition led to a significant improvement in the impact strength of the nanocomposites. The SEBS‐g‐MA elastomer was found to be very effective at converting brittle PP/VMT organoclay composites into tough nanocomposites. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2332–2341, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号