首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Atomic nuclei along the neutron drip line are investigated experimentally by breakup reactions of the rare isotope beams. Such exotic nuclei often show the neutron halo structure, which is the main focus of this paper. Characteristic features of the Coulomb and nuclear breakup at intermediate to high incident energies are described. Then, recent experimental results on halo nuclei, mainly on 31Ne, obtained at the new-generation RI-beam facility, RIBF (RI Beam factory) at RIKEN, are presented. Perspectives for the breakup experiments using the new facility SAMURAI at RIBF ara also discussed.  相似文献   

2.
利用放射性束装置所提供的高强度和高分辨率的短寿命核束流可达到核中质比的极端值 ,新的现象 ,如中子晕、质子晕、中子皮、质子皮、壳的减弱或消失 ,以及在滴线附近对力的重要性和核物质中质子 -中子对的新超导相的可能存在等不断涌现 .对这些现象进行研究和理解 ,然后回到实验上较易达到的稳定区核去检验人们的理解 ,会对进一步研究核结构、核合成、核天文和自然界基本对称性提供新的机遇 .By making use of the facility for radioactive beams which would be able to supply intense high resolution beams of short lived (radioactive) nuclei, the neutron proton ratio can be extended to extreme values, where some new phenomena such as neutron halo, proton halo, neutron skin, proton skin, growing evidence of the fragility or disappearance of shell structure far from stability, the importance of pairing correlation near drip line, and the possible existence of new superconducting phases of...  相似文献   

3.
Extreme states of nuclearmatter (such that feature high spins, large deformations, high density and temperature, or a large excess of neutrons and protons) play an important role in studying fundamental properties of nuclei and are helpful in solving the problem of constructing the equation of state for nuclear matter. The synthesis of neutron-rich nuclei near the nucleon drip lines and investigation of their properties permit drawing conclusions about the positions of these boundaries and deducing information about unusual states of such nuclei and about their decays. At the present time, experimental investigations along these lines can only be performed via the cooperation of leading research centers that possess powerful heavy-ion accelerators, such as the Large Hadron Collider (LHC) at CERN and the heavy-ion cyclotrons at the Joint Institute for Nuclear Research (JINR, Dubna), where respective experiments are being conducted by physicists from about 20 JINR member countries. The present article gives a survey of the most recent results in the realms of super neutron-rich nuclei. Implications of the change in the structure of such nuclei near the nucleon drip lines are discussed. Information about the results obtained by measuring the masses (binding energies) of exotic nuclei, the nucleon-distribution radii (neutron halo) and momentum distributions in them, and their deformations and quantum properties is presented. It is shown that the properties of nuclei lying near the stability boundaries differ strongly from the properties of other nuclei. The problem of the stability of nuclei that is associated with the magic numbers of 20 and 28 is discussed along with the effect of new magic numbers.  相似文献   

4.
Nuclear spectroscopy using radioactive isotope beams requires dedicated set-ups. State-of-the-art Ge arrays recently started to provide valuable γ spectroscopic data. At the SIS/FRS facility at GSI exotic beams at relativistic energies were employed for Coulomb excitation and secondary fragmentation experiments with the fast beam RISING set-up. Shell evolution far off stability, pn-pairing, symmetries and nuclear shapes were studied in nuclei ranging from 36Ca to 136Nd. The observation of a I = 27 ħ state demonstrated that high spin states can be reached in massive fragmentation reactions. This and the large sensitivity of relativistic in-beam experiments opens a rich ground for advanced nuclear structure studies. Combining RISING with AGATA γ-tracking detectors and improved particle detection is planned for future experimental investigations.  相似文献   

5.
The production of exotic nuclei in the vicinity of the neutron drip line and the investigation of their properties are one of the most important lines of research in contemporary nuclear physics. The present article is devoted to discussing various allied issues. Methods for producing such nuclei at accelerators are described, and unusual properties of new, artificially synthesized, light nuclei are considered. New information concerning the use of beams of radioactive nuclei in various investigations, including studies in astrophysics, is presented.  相似文献   

6.
For fifty years the isotope separation on-line (ISOL) technique has been used for the production of radioactive-ion beams (RIBs). Thick-target ISOL facilities can provide very intense RIBs for a wide range of applications. The important design parameters for an ISOL facility are efficiency, rapidity and selectivity of all steps of the separation process. To achieve the anticipated beam intensities with the next-generation RIB facilities, the production rate in the ISOL target has to be increased by orders of magnitude. This is only possible by adapting the projectile beam for optimum production cross-sections and simultaneously minimizing the target heating due to the electronic stopping power of charged-particle projectiles. ISOL beams of 75 different elements have been produced up to now and further beam development is under way to produce a still greater variety of isotopes and to improve existing beams in intensity and purity. Received: 21 March 2002 / Accepted: 16 May 2002 / Published online: 31 October 2002 RID="a" ID="a"e-mail: Ulli.Koster@cern.ch  相似文献   

7.
8.
We study the proton magic O, Ca, Ni, Zr, Sn, and Pb isotope chains from the proton drip line to the neutron drip line with the relativistic continuum Hartree-Bogoliubov (RCHB) theory. Particulary, we study in detail the properties of even-even Ca isotopes due to the appearance of giant halos in neutron rich Ca nuclei near the neutron drip line. The RCHB theory is able to reproduce the experimental binding energiesE b and two neutron separation energiesS 2n very well. The predicted neutron drip line nuclei are28O,72Ca,98Ni,136Zr,176Sn, and266Pb. Halo and giant halo properties predicted in Ca isotopes withA>60 are investigated in detail through analysis of two neutron separation energies, nucleon density distributions, single particle energy levels, and the occupation probabilities of energy levels including continuum states. The spin-orbit splitting and the diffuseness of nuclear potential in these Ca isotopes, as well as the neighboring lighter isotopes in the drip line Ca region and find certain possibilities of giant halo nuclei in the Ne−Na−Mg drip line nuclei are also studied.  相似文献   

9.
在北京串列实验室建立了次级束流实验装置 ,用于放射性核束物理和核天体物理研究 .先后开展了7Be(d ,n) 8B ,11C(d ,n) 12 N ,8Li(d ,p) 9Li和6 He(p ,n) 6 Li核天体物理重要反应的研究 .介绍了串列加速器升级工程的进展情况 .该工程在现有串列加速器的基础上 ,将建立 10 0MeV/ 2 0 0 μA的质子回旋加速器、在线同位素分离器和超导加速段 .在此装置上 ,将可以产生质量数最高为 12 0 ,强度最高为 10 9particles/s的放射性束流 . A secondary beam line (GIRAFFE) at the Beijing Tandem accelerator lab was constructed for yielding low energy secondary beams. The current progress on the study of nuclear astrophysics and nuclear structure is presented. Up to now, We have carried out measurement of~(7)Be(d, n)~( 8)B,~(11)C(d, n)~(12)N,~(8)Li(d, p)~(9)Li, and~(6)He(p, n)~(6)Li reactions. The proposed Beijing radioactive nuclear beam facility (BRIF ) and its current R&D progress are briefly introduced. This facility is based on...  相似文献   

10.
There are several nuclear physics laboratories in North America that have on-going research using energetic and stopped radioactive beams. These include the large ISOL-type programs ISAC at TRIUMF and HRIBF at Oak Ridge and the in-flight fragmentation program at the NSCL of Michigan State University. There are also smaller, more specialized, programs using a variety of techniques at the 88-inch cyclotron of Berkeley, ATLAS at Argonne, the Cyclotron Institute of Texas A&M University, the Nuclear Structure Laboratory at Notre Dame University, and the Nuclear Structure Laboratory at SUNY/Stony Brook. There are also three projects on the horizon in North America for new capabilities in both the near term and more distant future. The intensities of the in-flight fragment beams at the NSCL will be increased dramatically very soon as the Coupled Cyclotron Project will be completed and commissioned for research by mid-2001. A new project, ISAC-II, has been approved in Canada. For the longer term, the United States is considering construction of a major new facility, the Rare Isotope Accelerator (RIA), which would have a very high-intensity heavy-ion driver linac. The RIA facility is proposed to utilize both ISOL and in-flight production mechanisms. Received: 1 May 2001 / Accepted: 4 December 2001  相似文献   

11.
北京放射性离子束装置(Beijing Radioactive Ion-beam Facility,BRIF)是基于在线同位素分离器技术的国家大科学平台。在BRIF装置上利用100 MeV的质子束轰击较厚的反应靶产生放射性核素;反应产物经离子源电离和在线分离,在线同位素分离段可引出100~300 keV的放射性核束,质量分辨率达20 000。在基金委科学仪器基础研究专项的支持下,建成了多用途的衰变实验终端,包括束流传输管道、通用靶室、带电粒子和γ探测器、集成电子学和数据获取系统等。利用100 MeV的质子束轰击MgO厚靶产生了流强高达1×105 pps的20Na放射性核束。通过高效率地同时测量β,γ和α,第一次直接观测到20Na非常稀有的β-γ-α衰变模式。Beijing Radioactive Ion-beam Facility(BRIF) has been commissioned as the national Radioactive Ion Beam(RIB) facility based on the Isotope Separator On Line(ISOL) technique since 2016. At BRIF, the radioactive nuclides are produced by the proton beam of 100 MeV bombarding a thick-target, the reaction products diffusing out of the target are ionized by an ion source and delivered to the online mass separator. In addition to the post-accelerated radioactive ion beams, BRIF can provide low-energy ISOL beams of 100 to 300 keV with a mass resolution of 20 000. A general-purpose decay station has been built including the ISOL beam transport line, a conventional reaction chamber, charge-particle and γ detectors with integrated electronics and data acquisition system. An intense 20Na ISOL beam up to 1×105 pps was produced by using the 100 MeV proton beam bombarding a MgO thick target. With high-efficiency measurements of β, γ and α simultaneously, very rare β-γ-α decay mode in 20Na has been directly observed for the first time in the present work.  相似文献   

12.
北京放射性核束装置在线同位素分离器(BRISOL)采用100 MeV回旋加速器提供的最大200 μA的质子束打靶在线产生放射性核束。在BRISOL上已经使用氧化钙靶、氧化镁靶产生了Na+、K+等放射性核束。为了产生铝同位素放射性核束,研发了碳化硅靶材,开展了碳化硅靶产生铝放射性核束的实验研究。在BRISOL装置上首次产生了铝同位素放射性核束,其中26gAl+的束流强度为8.7×107 pps,23Al+的束流强度为2.2×102 pps,同时将BRISOL靶能承受的质子束流强提升至15 。  相似文献   

13.
PJ Woods 《Pramana》1999,53(3):607-607
This paper will review the dramatic increase in our knowledge of one and two proton unbound nuclei [1] such as recoil decay tagging [2] are revealing unique insights into the structure of nuclei beyond the proton drip-line. These studies of excited states provide complementary information to proton radioactivity studies, particularly regarding the role of deformation [3]. Radioactive beams are being used to study two-proton unbound resonances and to study explosive nuclear astrophysical reactions in the region of the proton drip-line.  相似文献   

14.
应用原子核的宏观-微观模型研究远离稳定线核的性质,得到了一些结果,例如质子和中子滴线,质子和中子密度分布及其均方根半径和中子皮厚度随同位素位移的变化.对一些奇异核性质的计算结果同相对论平均场方法计算的结果作了比较,对质子滴线附近核的质子放射性也作了简要讨论.  相似文献   

15.
Liu  WeiPing  Li  ZhiHong  Bai  XiXiang  Wang  YouBao  Guo  Bing  Peng  ChaoHua  Yang  Yi  Su  Jun  Cui  BaoQun  Zhou  ShuHua  Zhu  ShengYun  Xia  HaiHong  Guan  XiaLing  Zeng  Sheng  Zhang  HuanQiao  Chen  YongShou  Tang  HongQing  Huang  Li  Feng  BeiYuan 《中国科学:物理学 力学 天文学(英文版)》2011,54(1):14-17
China Institute of Atomic Energy (CIAE) is currently constructing Beijing rare ion beam facility (BRIF) and is proposing China advanced rare ion beam facility (CARIF). This paper is aiming at introducing the progress of BRIF project and the conceptual design CARIF. The ISOL type facility BRIF under construction is composed of a 100 MeV 300 μA proton cyclotron, an ISOL with mass resolution of 20000, and a super-conducting LINAC of 2 MeV/q, and will be commissioned in 2013. CARIF facility proposed is planned to use both ISOL and PF techniques. It is based on a China advanced research reactor CARR that was critical, with ISOL separation of fission fragment, post acceleration to 150 MeV/u, and fragmentation of neutron-rich fission fragment beam like 132Sn. Such unique combination will allow CARIF to deliver beam intensity better than the best world facilities by more than one order of magnitude.  相似文献   

16.
本总结了晕和皮等奇异核子结构研究的现状,介绍了发现晕和皮现象的实验证据。然后集中介绍了利用奇异核反应总截面的实验测量和理论模型,从中提取奇异核物质半径,核内核子分布以及介质中的核子-核子碰撞截面等重要信息,我们将特别强调通过实验测量和理论模型之间的联系来研究奇异结构性质。  相似文献   

17.
The proton drip line defines one of the fundamental limits to nuclear stability. Nuclei lying beyond this line are energetically unbound to the emission of a constituent proton from their ground states. For near-spherical nuclei in the region of the drip line between Z=69 (Tm) and Z=81 (T1), proton decay transition rates have been shown to be well reproduced by WKB calculations using spectroscopic factors derived from a low-seniority shell model calculation [2]. Another approach using spectroscopic factors obtained from the independent quasiparticle approximation has also proved successful in this region [3]. These interpretations have allowed the extraction of nuclear structure information from nuclei well beyond the proton drip line.  相似文献   

18.
On the basis of the Hartree-Fock method as implemented with Skyrme forces (Ska, SkM*, Sly4, and SkI2) and with allowance for an axial deformation and nucleon pairing in the Bardeen-Cooper-Schrieffer approximation, the properties of extremely neutron-rich even-even nuclei were calculated beyond the neutron drip line known earlier from theoretical calculations. It was shown that the chains of isotopes beyond the neutron drip line that contain N = 32, 58, 82, 126, and 184 neutrons form peninsulas of nuclei stable against the emission of one neutron and, in some cases, peninsulas of nuclei stable against the emission of two neutrons. The neutron- and proton-density distributions in nuclei forming stability peninsulas were found to be spherically symmetric. A mechanism via which the stability of nuclei might be restored beyond the neutron drip line was discussed. A comparison with the results of calculations by the Hartree-Fock-Bogolyubov method was performed for long chains of sulfur and gadolinium isotopes up to the neutron drip line.  相似文献   

19.
The physics opportunities made possible by beams of rare isotopes are among the richest available in nuclear science. The rare-isotope accelerator (RIA) now under development is an innovative accelerator that will define the state of the art for all such facilities. A novel aspect of the RIA project is the conversion of the most intense high-energy heavy-ion beams into both fast and reaccelerated exotic beams. Along with target fragmentation in next-generation high-power ISOL targets, RIA will use projectile fragmentation in a high-energy separator/gas-filled ion collector system to provide an extensive range of thermalized ions for reacceleration. In addition, a second high-energy separator will provide the same or larger range of ions for high-energy experiments. A brief overview of the RIA accelerator concept, the layout of the facility, and production techniques will be given along with information on the present R&D efforts in gaseous-ion collection. Received: 21 March 2002 / Accepted: 16 May 2002 / Published online: 31 October 2002 RID="a" ID="a"e-mail: morrissey@nscl.msu.edu  相似文献   

20.
ARIEL overview     
The Advanced Rare Isotope Laboratory (ARIEL) will expand the scientific capabilities of TRIUMF’s rare isotope program by providing more exotic isotope species with very high intensities and by adding two production targets that will provide beams in parallel to the existing ISAC target station. Together, these three stations will fully enable the exploitation of the numerous existing experimental facilities at ISAC, including experimental facilities for medical isotope research, nuclear astrophysics, material studies, fundamental nuclear studies, and searches beyond the standard model. This article summarizes the science reach of ARIEL and describes the facility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号