首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
含氮配位原子的希夫碱型化合物在分析化学、合成化学、药学等方面有广泛的应用。  相似文献   

2.
J.J.Calienni等以水杨醛及取代水杨醛与取代氨基乙醇反应制得多种希夫碱,并合成了它们与铕的希夫碱配合物。N-(2-羟基乙基)-水杨醛亚胺(HESI)与Co(Ⅱ)、Ni(Ⅱ)、Cu(Ⅱ)和Zn(Ⅱ)配合物的合成和抗癌活性的研究也有报道,但该希夫碱稀土配合物尚未见文献报道。鉴于有些稀土化合物具有消炎、抗癌活性,合成稀土希夫碱配  相似文献   

3.
双希夫碱稀土络合物的荧光性质   总被引:4,自引:0,他引:4  
尹伟  张迈生 《分析化学》2003,31(2):217-220
采用荧光光谱、紫外吸收光谱及红外吸收光谱对稀土元素钐、铽与双希夫碱N ,N′ 二 (亚水扬基 ) 1 ,4 二氨基丁烷、N ,N′ 二 (亚水扬基 ) 1 ,5 二氨基戊烷以及还原希夫碱N ,N′ 二 (水扬基 ) 1 ,4 二氨基丁烷合成的络合物进行了研究。双希夫碱和还原双希夫碱的N和O原子参与配位 ,形成络合物的荧光是以配体发光为主。当双希夫碱和TTA共存于同一络合物时 ,钐的络合物存在配体协同发光效应 ,表现为有较强Sm3+ 特征发光性能 (m →m型发光 ) ;而铽的络合物则以配体发光为主  相似文献   

4.
本文合成一个新的希夫碱大环配体硝酸Ho(III)配合物 [Ho(H2L)(NO3)2](NO3) (H2L表示大环配体Fig. 1),并进行了系统的物理表征. 晶体结构研究表明: 配合物晶体结构属六方晶系,P 3(1)21空间群,晶胞参数a=1.47213(7) nm,c=2.8998(3) nm,α=90°,γ=120°,V=5.4424(7) nm 3,Z=6,R=0.0331, wR=0.0928。中心离子Ho3+位于隔室大环配体的一侧并于希夫碱大环上的两个酚基氧原子和三个氮原子配位,两个双齿配位硝酸根分别从希夫碱大环平面的两侧与中心离子配位使中心离子形成扭曲的九配位三冠三棱柱配位构型。并通过凝胶电泳实验初步研究了该配合物对pBR322质粒DNA的切割作用。  相似文献   

5.
合成了一个新的希夫碱大环配体硝酸Ho(Ⅲ)配合物[Ho(H2L)(NO3)2](NO3)(H2L表示大环配体),并进行了系统的物理表征.晶体结构研究表明,配合物晶体结构属六方晶系,P3121空间群,晶胞参数a=1.47213(7)nm,c=2.8998(3)nm,α=90°,γ=120°,V=5.4424(7)nm3,Z=6,R=0.0331,wR=0.0928.中心离子Ho3+位于隔室大环配体的一侧,并与希夫碱大环上的2个酚基氧原子和3个氮原子配位,2个双齿配位硝酸根分别从希夫碱大环平面的两侧与中心离子配位,使中心离子形成扭曲的九配位三冠三棱柱构型.通过凝胶电泳实验初步研究了该配合物对pBR322质粒DNA的切割作用.  相似文献   

6.
邻香草醛缩天冬氨酸铜、锌、钴、镍配合物的合成   总被引:7,自引:0,他引:7  
氨基酸希夫碱是具有多种配位原子和生物、化学活性的配体,其过渡金属配合物对生物无机化学和医药有重要意义[1~3],我们曾报道过某些氨基酸希夫碱及其配合物的抗O-·2性能[4,5].本文合成了邻香草醛缩天冬氨酸铜、锌、钴、镍配合物并进行了系列表征,提出其...  相似文献   

7.
通过硝酸镍与卤代希夫碱在甲醇溶液中反应,合成了2个Ni(Ⅱ)希夫碱配合物[Ni(3,5-Cl-salcy)](1)和[Ni(3-Cl-salcy)](2),(3,5-Cl-salcyH2=N,N′-(±)-双(3,5-二氯水杨基)-1,2-环己二胺;3-Cl-salcyH2=N,N′-(±)-双(3-氯水杨基)-1,2-环己二胺)。通过X射线衍射测定了2个配合物的结构。结构分析表明2个配合物的基本单元均为Ni(Ⅱ)离子通过与希夫碱配体的[N2O2]原子配位构成相似的平面型单核配合物。Platon软件分析表明配合物1中并不存在任何氢键,配合物2也仅存在非经典氢键。通过Hirshfeld表面分析法对2个配合物晶体结构中弱交换作用的分析结果表明,虽然卤原子构成的氢键相对较弱,但是C-H…X在稳定三维超分子晶体结构中起着非常重要的作用;此外,通过2个配合物的对比发现,配体中卤原子数量的不同对于晶体中弱交换作用的占比可以起到非常重要的影响。  相似文献   

8.
希夫碱在配位化学中占有重要的地位,是配位化学研究的重点内容之一[1].氨基酸希夫碱在化学研究、医药、军事、工业、农业、海洋等各个领域中已经得到了广泛的应用[2].  相似文献   

9.
含硫(氧)肟醚化合物杀虫活性三维定量构效关系研究   总被引:2,自引:0,他引:2  
打破文献[1~3]中芳基烷基肟醚化合物的结构框架,将杂原子硫(氧)引入到其烷基中,设计并合成了一系列全新结构的含硫(氧)肟醚化合物.其生物活性研究结果表明,该系列化合物具有优良的杀鳞翅目、同翅目和直翅目等害虫的作用,且具有拟除虫菊酯农药快速击倒的活性特点.  相似文献   

10.
一些缩氨硫脲及其衍生物对结核、麻风、风湿、疟疾、天花、真菌和某些肿瘤有一定的药理活性。缩氨硫脲的真菌活性是由于它的配位原子在生物体的新陈代谢中和真菌所需的金属离子螯合。缩氨硫脲具有与氨基酸、肽、蛋白质、酶、核糖核酸等生物配体相同的配位原子、被看作研究生物配体和痕量金属离子配位的优良模型。因为聚乙二醇醚链上的氧原子能与金属离子配位,所以在缩氨硫脲分子中连接上聚乙二醇醚链,增加缩氨硫脲分子中的配位原子种类和数目,也许能够增强螯合剂的配位能力,扩展其与金属离子的螯合围范。为此,我们将缩乙二醇二氯化物和苯环上带酰基的苯酚反应,制成化合物1_(a-h),然后再与硫代氨基脲缩合,得到醚链桥接的芳香醛缩氨硫脲2_(a-g)。它们的合成路线和主要结构如下:  相似文献   

11.
The synthesis and characterization of Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Pd(II) and UO2(II) chelates of 1-(2-thiazolylazo)-2-naphthalenol (TAN) were reported. The dissociation constants of the ligand and the stability constants of the metal complexes were calculated pH-metrically at 25 degrees C and 0.1 M ionic strength. The solid complexes were characterized by elemental and thermal analyses, molar conductance, IR, magnetic and diffuse reflectance spectra. The complexes were found to have the formulae [M(L)2] for M = Mn(II), Co(II), Ni(II), Zn(II) and Cd(II); [M(L)X].nH2O for M = Cu(II) (X = AcO, n = 3), Pd(II) (X = Cl, n = 0) and UO2(II) (X = NO3, n = 0), and [Fe(L)Cl2(H2O)].2H2O. The molar conductance data reveal that the chelates are non-electrolytes. IR spectra show that the ligand is coordinated to the metal ions in a terdentate manner with ONN donor sites of the naphthyl OH, azo N and thiazole N. An octahedral structure is proposed for Mn(II), Fe(III), Co(II), Ni(II), Zn(II), Cd(II) and UO2(II) complexes and a square planar structure for Cu(II) and Pd(II) complexes. The thermal behaviour of these chelates shows that water molecules (coordinated and hydrated) and anions are removed in two successive steps followed immediately by decomposition of the ligand molecule in the subsequent steps. The relative thermal stability of the chelates is evaluated. The final decomposition products are found to be the corresponding metal oxides. The thermodynamic activation parameters, such as E*, delta H*, delta S* and delta G* are calculated from the TG curves.  相似文献   

12.
Novel complexes of Co(II), Ni(II), Cu(II) and Pd(II) with the new ligand [N,N'-bis(2-carboxy-1-oxo-phenelenyl)ethylenediamine] (H2L) have been synthesized and characterized on the basis of elemental analyses, magnetic susceptibility, thermal, infrared, electronic, 1H NMR and EPR spectral studies. Infrared and 1H NMR spectra show that H2L acts as a binegative tetradentate ligand. Coordination occurs through deprotonated carboxylate oxygens and nondeprotonated amido nitrogens in all the complexes. Electronic spectral studies and magnetic moment values suggest N2O2 coordination around each metal centre with strong field square planar chromophores. The probable structures of the complexes have been assigned on the basis of spectral studies. The complex formation between M(II) [M(II) = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II)] and (L2-) has also been studied potentiometrically in 75% aqueous DMF at 25 degrees C in 0.1 M NaClO4. The stability constants were found to follow the order: Mn(II) < Co(II) < Ni(II) < Cu(II) > Zn(II).  相似文献   

13.
New bidentate N-(2,6-di-phenyl-1-hydroxyphenyl) salicylaldimines bearing X=H and 3,5-di-t-butyl substituents on the salicylaldehyde ring, L(x)H, and their copper(II) complexes, M(Lx)2, (M=Cu(II), Co(II), Pd(II), Ni(II) and Zn(II)) have been synthesized and characterized by IR, UV/vis, 1H NMR, 13C NMR, ESR spectroscopy, magnetic susceptibility measurements, as well as their oxidation with PbO(2) and reduction (for Cu(Lx)2) with PPh(3) were investigated. ESR studies indicate that oxidation of M(Lx)2 produces ligand-centered M(II)-phenoxyl radical species. The Cu(Lx)2 complexes, unlike others M(Lx)2, are readily reduced by PPh3 via intramolecular electron transfer from ligand to copper(II) to give unstable radical intermediates which are converted to another stable secondary radical species. The analysis of ESR spectra of Cu(Lx)(2), Co(L1)(2) and generated phenoxyl radicals are presented.  相似文献   

14.
The alkyne functionalised bidentate N-donor ligand (2-propargyloxyphenyl)bis(pyrazolyl)methane was prepared in high yield from the reaction of (2-hydroxyphenyl)bis(pyrazolyl)methane with propargyl bromide in the presence of base. A series of transition-metal complexes including [MCl2] (M=Cu, Co, Ni, Zn, Pt), [M2](NO3)2 (M=Cu, Co, Ni, Zn), [Ag]NO3 and [Pd(dppe)](OTf)2 were prepared and characterised by spectroscopic techniques. In addition, ligand as well as the Co(II) and Zn(II) complexes [CoCl2]2, [ZnCl2] were structurally characterized by single-crystal X-ray diffraction. The organometallic gold(I) and platinum(II) acetylide complexes [Pz2CH(C6H(4)-2-OCH2C[triple bond, length as m-dash]CAuPPh3)] and trans-[{Pz2CHC6H(4)-2-OCH2C[triple bond, length as m-dash]C}2Pt(PPh3)2] were prepared from and [AuCl(PPh3)] and trans-[PtCl2(PPh3)2], respectively. Treatment of these complexes with [Pd(OTf)2(dppe)] or [Cu(MeCN)4]PF6 results in formation of the cationic, mixed-metal complexes, which were isolated (Pt/Pd, Au/Pt) or detected by electrospray mass spectrometry (Au/Cu, Pt/Cu).  相似文献   

15.
Some mixed ligand complexes containing 2-methylbenzimidazole and thiocyanate ion were synthesized. Free ligands and their metal complexes were characterized using elemental analysis, determination of metal, magnetic susceptibility, molar conductivity, infrared, UV-VIS, and (1H, 13C) NMR spectra, and X-ray structure analysis. The results suggest that the Ag(I) complex has linear geometry, Fe(II), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II) have tetrahedral geometry, Pd(II) complex has square planar geometry, VO(IV) square pyramidal geometry, Pb(II) irregular tetrahedral geometry, and that the Cr(III) and Mn(II) complexes have octahedral geometry. The following general formulae were proposed for the prepared complexes: [AgBX], [CrB3X3], (HB)2[MnB2X4] · 2B and [MB2X2], where B = 2-methylbenzimidazole, HB = 2-methylbenzimidazolium, X = thiocyanate ion, and M = VO(IV), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Pd(II), Cd(II), and Pb(II). Molar conductance of a 10−3 M solution in N,N-dimethyl formamide (DMF) indicates that all the complexes are non-electrolytes except the Mn(II) complex which is an electrolyte because the molar conductivity of its solution in DMF is high.  相似文献   

16.
Ternary Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and UO2(II) complexes with piroxicam (Pir) drug (H2L1) and dl-alanine (Ala) (HL2) and also the binary UO2(II) complex with Pir were studied. The structures of the complexes were elucidated using elemental, IR, molar conductance, magnetic moment, diffused reflectance and thermal analyses. The UO2(II) binary complex was isolated in 1:2 ratio with the formula [UO2(H2L)2](NO3)2. The ternary complexes were isolated in 1:1:1 (M:H2L1:L2) ratios. The solid complexes were isolated in the general formulae [M(H2L)(L2)(Cl)n(H2O)m].yH2O (M=Fe(III) (n=2, m=0, y=1), Co(II) (n=1, m=1, y=2) and Ni(II) (n=1, m=1, y=0)); [M(H2L)(L2)](X)z.yH2O (M=Cu(II) (X=AcO, z=1, y=0), Zn(II) (X=AcO, z=1, y=3) and UO2(II) (X=NO3, z=1, y=2)). Pir behaves as a neutral bidentate ligand coordinated to the metal ions via the pyridine-N and carbonyl-O groups, while Ala behaves as a uninegatively bidentate ligand coordinated to the metal ions via the deprotonated carboxylate-O and amino-N. The magnetic and reflectance spectral data show that the complexes have octahedral geometry except Cu(II) and Zn(II) complexes have tetrahedral structures. The thermal decomposition of the complexes was discussed in relation to structure, and the thermodynamic parameters of the decomposition stages were evaluated.  相似文献   

17.
Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and UO(2)(II) complexes with the ligand 2-tert-butylaminomethylpyridine-6-carboxylic acid methylester (HL(2)) have been prepared and characterized by elemental analyses, molar conductance, magnetic moment, thermal analysis and spectral data. 1:1 M:HL(2) complexes, with the general formula [M(HL(2))X(2)].nH(2)O (where M = Co(II) (X = Cl, n = 0), Ni(II) (X = Cl, n = 3), Cu(II) (grey colour, X = AcO, n = 1), Cu(II) (yellow colour, X = Cl, n = 0) and Zn(II) (X = Br, n = 0). In addition, the Fe(III) and UO(2)(II) complexes of the type 1:2 M:HL(2) and with the formulae [Fe(L(2))(2)]Cl and [UO(2)(HL(2))(2)](NO(3))(2) are prepared. From the IR data, it is seen that HL(2) ligand behaves as a terdentate ligand coordinated to the metal ions via the pyridyl N, carboxylate O and protonated NH group; except the Fe(III) complex, it coordinates via the deprotonated NH group. This is supported by the molar conductance data, which show that all the complexes are non-electrolytes, while the Fe(III) and UO(2)(II) complexes are 1:1 electrolytes. IR and H1-NMR spectral studies suggest a similar behaviour of the Zn(II) complex in solid and solution states. From the solid reflectance spectral data and magnetic moment measurements, the complexes have a trigonal bipyramidal (Co(II), Ni(II), Cu(II) and Zn(II) complexes) and octahedral (Fe(III), UO(2)(II) complexes) geometrical structures. The thermal behaviour of the complexes is studied and the different dynamic parameters are calculated applying Coats-Redfern equation.  相似文献   

18.
A series of novel Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes with oxaprozin (Hoxa), a non-steroidal anti-inflammatory drug, has been synthesized. The drug and complexes have been characterized by elemental and thermogravimetric (TG) analysis, Fourier transform (FT)-IR, 1H-NMR, 13C-NMR, UV-Vis spectroscopy and magnetic susceptibility measurements. The (pseudo)octahedral geometry has been proposed for all complexes based on electronic spectra and magnetic moments. With exception of the Cu(II) complex, where bridging bidentate mode of COO groups has been found, FT-IR spectra confirmed chelately coordinated COO groups in the other complexes. The general formula of the complexes is [M(H2O)2(oxa)2 ·χH2O, with χ=2 for M=Mn, Co and Ni and χ=1.5 for Zn. The binuclear Cu(II) complex, [Cu2(H2O)2(OH)(oxa)3]·2H2O, has strong Cu-Cu interactions of antiferromagnetic type. The complexes and Hoxa did not exhibit the cytotoxic effect to peritoneal macrophages. For the first time these complexes have been tested for their in vitro antiproliferative activity against human colon and breast cancer cell lines, HCT-116 and MDA-231, respectively. For all investigated compounds significant antiproliferative effects have been observed. Ni(II) complex has been shown to be a promising antiproliferative agent exerting excellent activity against HCT-116 even in nanomolar concentrations.  相似文献   

19.
The ligand 1,4-dibenzoyl-3-thiosemicarbazide (DBtsc) forms complexes [M(DBtsc-H)(SCN)] [M = Mn(II), Co(II) or Zn(II)], [M(DBtsc-H) (SCN)(H2O)] [M = Ni(II) or Cu(II)], [M(DBtsc-H)Cl] [M = Co(II), Ni(II), Cu(II) or Zn(II)] and [Mn(DBtsc)Cl2], which have been characterized by elemental analyses, magnetic susceptibility measurements, UV/Vis, IR,1H and13C NMR and FAB mass spectral data. Room temperature ESR spectra of the Mn(II) and Cu(II) complexes yield <g> values, characteristic of tetrahedral and square planar complexes respectively. DBtsc and its soluble complexes have been screened against several bacteria, fungi and tumour cell lines.  相似文献   

20.
Metal complexes of Schiff base derived from 2-thiophene carboxaldehyde and 2-aminobenzoic acid (HL) are reported and characterized based on elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance and thermal analysis (TGA). The ligand dissociation as well as the metal-ligand stability constants were calculated pH metrically at 25 degrees C and ionic strength mu=0.1 (1M NaCl). The complexes are found to have the formulae [M(HL)2](X)n.yH2O (where M=Fe(III) (X=Cl, n=3, y=3), Co(II) (X=Cl, n=2, y=1.5), Ni(II) (X=Cl, n=2, y=1) and UO2(II) (X=NO3, n=2, y=0)) and [M(L)2] (where M=Cu(II) (X=Cl) and Zn(II) (X=AcO)). The molar conductance data reveal that Fe(III) and Co(II), Ni(II) and UO2(II) chelates are ionic in nature and are of the type 3:1 and 2:1 electrolytes, respectively, while Cu(II) and Zn(II) complexes are non-electrolytes. IR spectra show that HL is coordinated to the metal ions in a terdentate manner with ONS donor sites of the carboxylate O, azomethine N and thiophene S. From the magnetic and solid reflectance spectra, it is found that the geometrical structure of these complexes are octahedral. The thermal behaviour of these chelates shows that the hydrated complexes losses water molecules of hydration in the first step followed immediately by decomposition of the anions and ligand molecules in the subsequent steps. The activation thermodynamic parameters, such as, E*, DeltaH*, DeltaS* and DeltaG* are calculated from the DrTG curves using Coats-Redfern method. The synthesized ligands, in comparison to their metal complexes also were screened for their antibacterial activity against bacterial species, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus pyogones and Fungi (Candida). The activity data show that the metal complexes to be more potent/antibacterial than the parent Schiff base ligand against one or more bacterial species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号