首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and UO(2)(II) complexes with the ligand 2-tert-butylaminomethylpyridine-6-carboxylic acid methylester (HL(2)) have been prepared and characterized by elemental analyses, molar conductance, magnetic moment, thermal analysis and spectral data. 1:1 M:HL(2) complexes, with the general formula [M(HL(2))X(2)].nH(2)O (where M = Co(II) (X = Cl, n = 0), Ni(II) (X = Cl, n = 3), Cu(II) (grey colour, X = AcO, n = 1), Cu(II) (yellow colour, X = Cl, n = 0) and Zn(II) (X = Br, n = 0). In addition, the Fe(III) and UO(2)(II) complexes of the type 1:2 M:HL(2) and with the formulae [Fe(L(2))(2)]Cl and [UO(2)(HL(2))(2)](NO(3))(2) are prepared. From the IR data, it is seen that HL(2) ligand behaves as a terdentate ligand coordinated to the metal ions via the pyridyl N, carboxylate O and protonated NH group; except the Fe(III) complex, it coordinates via the deprotonated NH group. This is supported by the molar conductance data, which show that all the complexes are non-electrolytes, while the Fe(III) and UO(2)(II) complexes are 1:1 electrolytes. IR and H1-NMR spectral studies suggest a similar behaviour of the Zn(II) complex in solid and solution states. From the solid reflectance spectral data and magnetic moment measurements, the complexes have a trigonal bipyramidal (Co(II), Ni(II), Cu(II) and Zn(II) complexes) and octahedral (Fe(III), UO(2)(II) complexes) geometrical structures. The thermal behaviour of the complexes is studied and the different dynamic parameters are calculated applying Coats-Redfern equation.  相似文献   

2.
Keeping in view the chemotherapeutic of the sulfa-drugs, Schiff base namely 2-thiophene carboxaldehyde-sulfametrole (HL) and its tri-positive and di-positive metal complexes have been synthesized and characterized by elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance, mass spectra, UV-vis and thermal analysis (TGA and DrTG). The low molar conductance values suggest the non-electrolytic nature of these complexes. IR spectra show that HL is coordinated to the metal ions in a tetradentate manner through hetero five-membered ring-S and azomethine-N, enolic sulfonamide-OH and thiadiazole-N, respectively. Zn(II), Cd(II) and UO2(II) complexes are found to be diamagnetic (as expected). The proposed general formulae of the prepared complexes are [M2X4(HL)(H2O)4] (where M=Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II), X=Cl, [Fe2Cl6(HL)(H2O)2], [(FeSO4)2(HL)(H2O)4] and [(UO2)2(HL) (NO3)4].H2O. The thermal behaviour of these chelates shows that the hydrated complexes loss water of hydration in first step in case of uranium complexes followed loss coordinated water followed immediately by decomposition of the anions and ligand molecules in the subsequent steps. The activation thermodynamic parameters, such as DeltaE*, DeltaH*, DeltaS*, and DeltaG* are calculated from the DrTG curves using Coats-Redfern method. The antimicrobial activity of the obtained products was performed using Chloramphenicol and Grisofluvine as standards, indicate that in some cases metallation increase activity than the ligand.  相似文献   

3.
Mononuclear and polynuclear chelates of potassium picolinoyldithiocarbazate (KHPcDC) with Mn(II), Fe(ll1), Fe(II), Co(Il), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II), Pd(II) and U(VI)O2 have been prepared and characterized by chemical and thermal (TG, DTG, DTA) analyses, molar conductivities, spectral (UV-Visible, IR, NMR, ESR) and magnetic moment measurements. The molar conductivities of the complexes lie in the non-electrolyte range whilst KHPcDC is a 1:1 electrolyte. Changes in selected vibrational absorption of the ligand upon coordination indicate that KHPcDC behaves as monoanionic and coordinates in a bidentate, tridentate and/or bridging tetradentate manner. Trans-form structure is proposed for [Pd(HPcDC)2] x 2H20 and [Cd(HPcDC)2] complexes on the basis of NMR data. An octahedral structure is proposed for Fe(III), Fe(II) and Ni(II) complexes, a square-planar structure for Co(II) and Pd(II) complexes and a tetragonally distorted octahedral structure for the Cu(II) chelate on the basis of spectroscopic and magnetic data. The ligand field parameters (B, Dq, beta) for the Fe(III) and Ni(II) chelates were calculated. TG, DTG and DTA studies support the different modes of chelation of KHPcDC. The solid metal acetate chelates have a unique decomposition exotherm profile which can be used as a rapid and sensitive tool for the detection of acetate-containing complexes.  相似文献   

4.
Ternary Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and UO(2)(II) chelates with tenoxicam (Ten) drug (H(2)L(1)) and dl-alanine (Ala) (HL(2)) and also the binary UO(2)(II) chelate with Ten were studied. The structures of the chelates were elucidated using elemental, molar conductance, magnetic moment, IR, diffused reflectance and thermal analyses. UO(2)(II) binary chelate was isolated in 1:2 ratio with the formula [UO(2)(H(2)L)(2)](NO(3))(2). The ternary chelates were isolated in 1:1:1 (M:H(2)L(1):L(2)) ratios and have the general formulae [M(H(2)L(1))(L(2))(Cl)(n)(H(2)O)(m)].yH(2)O (M=Fe(III) (n=2, m=0, y=2), Co(II) (n=1, m=1, y=2) and Ni(II) (n=1, m=1, y=3)); [M(H(2)L(1))(L(2))](X)(z).yH(2)O (M=Cu(II) (X=AcO, z=1, y=0), Zn(II) (X=AcO, z=1, y=3) and UO(2)(II) (X=NO(3), z=1, y=2)). IR spectra reveal that Ten behaves as a neutral bidentate ligand coordinated to the metal ions via the pyridine-N and carbonyl-O groups, while Ala behaves as a uninegatively bidentate ligand coordinated to the metal ions via the deprotonated carboxylate-O and amino-N. The magnetic and reflectance spectral data confirm that all the chelates have octahedral geometry except Cu(II) and Zn(II) chelates have tetrahedral structures. Thermal decomposition of the chelates was discussed in relation to structure and different thermodynamic parameters of the decomposition stages were evaluated.  相似文献   

5.
Metal complexes of Schiff base derived from 2-thiophene carboxaldehyde and 2-aminobenzoic acid (HL) are reported and characterized based on elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance and thermal analysis (TGA). The ligand dissociation as well as the metal-ligand stability constants were calculated pH metrically at 25 degrees C and ionic strength mu=0.1 (1M NaCl). The complexes are found to have the formulae [M(HL)2](X)n.yH2O (where M=Fe(III) (X=Cl, n=3, y=3), Co(II) (X=Cl, n=2, y=1.5), Ni(II) (X=Cl, n=2, y=1) and UO2(II) (X=NO3, n=2, y=0)) and [M(L)2] (where M=Cu(II) (X=Cl) and Zn(II) (X=AcO)). The molar conductance data reveal that Fe(III) and Co(II), Ni(II) and UO2(II) chelates are ionic in nature and are of the type 3:1 and 2:1 electrolytes, respectively, while Cu(II) and Zn(II) complexes are non-electrolytes. IR spectra show that HL is coordinated to the metal ions in a terdentate manner with ONS donor sites of the carboxylate O, azomethine N and thiophene S. From the magnetic and solid reflectance spectra, it is found that the geometrical structure of these complexes are octahedral. The thermal behaviour of these chelates shows that the hydrated complexes losses water molecules of hydration in the first step followed immediately by decomposition of the anions and ligand molecules in the subsequent steps. The activation thermodynamic parameters, such as, E*, DeltaH*, DeltaS* and DeltaG* are calculated from the DrTG curves using Coats-Redfern method. The synthesized ligands, in comparison to their metal complexes also were screened for their antibacterial activity against bacterial species, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus pyogones and Fungi (Candida). The activity data show that the metal complexes to be more potent/antibacterial than the parent Schiff base ligand against one or more bacterial species.  相似文献   

6.
Some mixed ligand complexes containing 2-methylbenzimidazole and thiocyanate ion were synthesized. Free ligands and their metal complexes were characterized using elemental analysis, determination of metal, magnetic susceptibility, molar conductivity, infrared, UV-VIS, and (1H, 13C) NMR spectra, and X-ray structure analysis. The results suggest that the Ag(I) complex has linear geometry, Fe(II), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II) have tetrahedral geometry, Pd(II) complex has square planar geometry, VO(IV) square pyramidal geometry, Pb(II) irregular tetrahedral geometry, and that the Cr(III) and Mn(II) complexes have octahedral geometry. The following general formulae were proposed for the prepared complexes: [AgBX], [CrB3X3], (HB)2[MnB2X4] · 2B and [MB2X2], where B = 2-methylbenzimidazole, HB = 2-methylbenzimidazolium, X = thiocyanate ion, and M = VO(IV), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Pd(II), Cd(II), and Pb(II). Molar conductance of a 10−3 M solution in N,N-dimethyl formamide (DMF) indicates that all the complexes are non-electrolytes except the Mn(II) complex which is an electrolyte because the molar conductivity of its solution in DMF is high.  相似文献   

7.
Ternary Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and UO2(II) complexes with piroxicam (Pir) drug (H2L1) and dl-alanine (Ala) (HL2) and also the binary UO2(II) complex with Pir were studied. The structures of the complexes were elucidated using elemental, IR, molar conductance, magnetic moment, diffused reflectance and thermal analyses. The UO2(II) binary complex was isolated in 1:2 ratio with the formula [UO2(H2L)2](NO3)2. The ternary complexes were isolated in 1:1:1 (M:H2L1:L2) ratios. The solid complexes were isolated in the general formulae [M(H2L)(L2)(Cl)n(H2O)m].yH2O (M=Fe(III) (n=2, m=0, y=1), Co(II) (n=1, m=1, y=2) and Ni(II) (n=1, m=1, y=0)); [M(H2L)(L2)](X)z.yH2O (M=Cu(II) (X=AcO, z=1, y=0), Zn(II) (X=AcO, z=1, y=3) and UO2(II) (X=NO3, z=1, y=2)). Pir behaves as a neutral bidentate ligand coordinated to the metal ions via the pyridine-N and carbonyl-O groups, while Ala behaves as a uninegatively bidentate ligand coordinated to the metal ions via the deprotonated carboxylate-O and amino-N. The magnetic and reflectance spectral data show that the complexes have octahedral geometry except Cu(II) and Zn(II) complexes have tetrahedral structures. The thermal decomposition of the complexes was discussed in relation to structure, and the thermodynamic parameters of the decomposition stages were evaluated.  相似文献   

8.
Novel hexachlorocyclodiphosph(V)azane of sulfaguanidine, H(4)L, l,3-[N'-amidino-sulfanilamide]-2,2,2,4,4,4-hexachlorocyclodiphosph(V)azane was prepared and its coordination behaviour towards the transition metal ions Fe(III), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and UO(2)(II) was studied. The structures of the isolated products are proposed based on elemental analyses, IR, UV-vis, (1)H NMR, mass spectra, reflectance, magnetic susceptibility measurements and thermogravimetric analysis (TGA). The hyperfine interactions in the isolated complex compounds were studied using 14.4keV gamma-ray from radioactive (57)Co (M?ssbauer spectroscopy). The data show that the ligand are coordinated to the metal ions via the sulfonamide O and deprotonated NH atoms in an octahedral manner. The H(4)L ligand forms complexes of the general formulae [(MX(z))(2)(H(2)L)H(2)O)(n)] and [(FeSO(4))(2) (H(4)L) (H(2)O)(4)], where X=NO(3) in case of UO(2)(II) and Cl in case of Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II). The molar conductance data show that the complexes are non-electrolytes. The thermal behaviour of the complexes was studied and different thermodynamic parameters were calculated using Coats-Redfern method. Most of the prepared complexes showed high bactericidal activity and some of the complexes show more activity compared with the ligand and standards.  相似文献   

9.
A macrocyclic ligand, bdta (where bdta=3,6,9,12,15,18-hexaaza-1,2,10,11-tetraphenyl-2,9,11,18-tetraenecyclododecane) has been prepared by cyclocondensation of benzil with diethylenetriamine which efficiently encapsulates transition as well as pseudo-transition metal ions leading to the formation of M(bdta)Cl2 type complexes [where M=Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II)]. The analytical, spectroscopic and magnetic moment data suggests an octahedral geometry for all the complexes. EPR spectra of Mn(II) and Cu(II) show considerable exchange interaction in the complex. They are non-conducting in DMSO. The TGA profile of the ligand and its complexes are identical and consists of two discreet stages. The voltammogram of Cu-complex exhibits a quasi-reversible one-electron transfer wave for Cu(II)/Cu(I) couple.  相似文献   

10.
Summary Two new quadridentate sulphur-nitrogen chelating agents have been prepared and characterized. These ligands yield stable complexes of general formulae, M(ONNS)·xH2O (M=Ni, Cu, Zn, Cd, Pd and Pt; ONNS–2=ligand dianion; x=0, 1 or 2) and M(ONNS)X (M=Co or Fe; X=Cl or AcO). The nicke(II) complexes are diamagnetic and squareplanar. Based on magnetic and spectral data a square-planar structure is also assigned to the copper(II) complexes. The iron(III) complexes, Fe(ONNS)Cl are high-spin and five-coordinate. Magnetic and spectral evidence support an octahedral structure for the cobalt(III) complex, Co(ONNS)OAc.  相似文献   

11.
The coordination behaviour of a new thiosemicarbazone Schiff-base building block, N-{2-([4-N-ethylthiosemicarbazone]methyl)phenyl}-p-toluenesulfonamide, H2L1 (1), incorporating a bulky tosyl group, towards Mn II, Fe II, Co II, Ni II, Cu II, Zn II, Cd II, Ag I, Sn II, and Pb II has been investigated by means of an electrochemical preparative procedure. Most metal complexes of L1 have the general formula [M(L1)]2.nX (M=Mn, Fe, Co, Ni, Cu, Cd, Pb; n=0-4, X=H2O or CH3CN), as confirmed by the structure of [Pb(L1)]2 (15), in which the lone pair on lead is stereochemically active. This lead(II) complex shows an intense fluorescence emission with a quantum yield of 0.13. In the case of silver, the complex formed was found to possess a stoichiometry of [Ag2(L1)]2.3H2O. During reactions with manganese and copper metals, interesting catalysed processes have been found to take place, with remarkable consequences regarding the ligand skeleton structure. In synthesising the manganese complex, we obtained an unexpected dithiolate thiosemicarbazone tosyl ligand, H2L2, as a side-product, which has been fully characterised, including by X-ray diffraction analysis. In the case of copper, the solid complex has the formula [CuL1]2, but the crystallised product shows the copper atoms coordinated to a new cyclised thiosemicarbazone ligand, H2L3, as in the structures of the complexes [Cu(L3)]2.CH3CN (8) and [Cu(L3)(H2O)]2.CH3CN.H2O (9). The zinc complex [Zn(L1)]4 (12) displays a particular tetranuclear zeolite-type structure capable of hosting small molecules or ions, presumably through hydrogen bonding.  相似文献   

12.
The thermodynamic and geometric parameters of M(II) macrotetracyclic chelates (M = Mn, Fe, Co, Ni, Cu, and Zn) with the (NNNN) coordination of the donor ligand sites, formed by the complexation reactions of corresponding M(II) compounds, ethanedithioamide H2N-C(=S)-C(=S)-NH2, and acetone H3C-C(=O)-CH3 in gelatin-immobilized matrix implants have been calculated by the OPBE/TZVP density functional theory method with the use of the Gaussian 09 program package. The bond lengths and bond and torsion angles in these complexes have been reported. It has been shown that despite the fact that the MN4 chelate core in them is almost planar, the five- and six-membered chelate rings are pronouncedly non-coplanar. In the Mn(II), Fe(II), Co(II), and Ni(II) complexes, these chelate rings are pairwise identical, whereas in the Cu(II) and Zn(II) complexes, they are noticeably different.  相似文献   

13.

A tridentate ONN donor ligand, 5-methyl-3-(2-hydroxyphenyl)pyrazole; H2L, was synthesized by reaction of 2-(3-ketobutanoyl)phenol with hydrazine hydrate. The ligand was characterized by IR, 1H NMR and mass spectra. 1H NMR spectra indicated the presence of the phenolic OH group and the imine NH group of the heterocyclic moiety. Different types of mononuclear metal complexes of the following formulae [(HL)2M][sdot]xH2O (M=VO, Co, Ni, Cu, Zn and Cd), [(HL)2M(H2O)2] (M=Mn and UO2) and [(HL)LFe(H2O)2] were obtained. The Fe(III) complex, [(HL)LFe(H2O)2] undergoes solvatochromism. Elemental analyses, IR, electronic and ESR spectra as well as thermal, conductivity and magnetic susceptibility measurements were used to elucidate the structures of the newly prepared metal complexes. A square-pyramidal geometry is suggested for the VO(IV) complex, square-planar for the Cu(II), Co(II) and Ni(II) complexes, octahedral for the Fe(III) and Mn(II) complexes and tetrahedral for the Zn(II) and Cd(II) complexes, while the UO2(VI) complex is eight-coordinate. Transmetallation of the UO2(VI) ion in its mononuclear complex by Fe(III), Ni(II) or Cu(II) ions occurred and mononuclear Fe(III), Ni(II) and Cu(II) complexes were obtained. IR spectra of the products did not have the characteristic UO2 absorption band and the electronic spectra showed absorption bands similar to those obtained for the corresponding mononuclear complexes. Also, transmetallation of the Ni(II) ion in its mononuclear complex by Fe(III) has occurred. The antifungal activity of the ligand and the mononuclear complexes were investigated.  相似文献   

14.
含氮配位原子的希夫碱型化合物在分析化学、合成化学、药学等方面有广泛的应用。近十多年来,随着新药物的研制和生物无机化学的发展,其研究正在不断深入。肟类化合物在结构上与希夫碱型化合物主要不同之处是在于它与氮原子相连的基团是羟基,它在适当的条件下可参与金属配位或形成氢键,研究其配位模式有较重要的理论意义。我们合成了一个新的含醚氧链的双肟化合物,2,2'—双[2—(邻甲酰肟苯氧基)乙基]醚(H_2BFO)。本  相似文献   

15.
Metal complexes of Schiff base derived from condensation of o-vanilin (3-methoxysalicylaldehyde) and sulfametrole [N(1)-(4-methoxy-1,2,5-thiadiazole-3-yl)sulfanilamide] (H2L) are reported and characterized based on elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance, mass spectra, UV-vis and thermal analysis (TGA). From the elemental analyses data, the complexes were proposed to have the general formulae [M2X3(HL)(H2O)5].yH2O (where M=Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II), X=Cl, y=0-3); [Fe2Cl5(HL)(H2O)3].2H2O; [(FeSO4)2(H2L)(H2O)4] and [(UO2)2(NO3)3(HL)(H2O)].2H2O. The molar conductance data reveal that all the metal chelates were non-electrolytes. The IR spectra show that, H2L is coordinated to the metal ions in a tetradentate manner with ON and NO donor sites of the azomethine-N, phenolic-OH, enolic sulphonamide-OH and thiadiazole-N. From the magnetic and solid reflectance spectra, it is found that the geometrical structures of these complexes are octahedral. The thermal behaviour of these chelates shows that the hydrated complexes losses water molecules of hydration in the first step followed immediately by decomposition of the anions and ligand molecules in the subsequent steps. The activation thermodynamic parameters, such as, E*, DeltaH*, DeltaS* and DeltaG* are calculated from the DrTG curves using Coats-Redfern method. The synthesized ligand, in comparison to their metal complexes also were screened for their antibacterial activity against bacterial species, Escherichia coli, Salmonella typhi, Bacillus subtillus, Staphylococcus aureus and Fungi (Aspergillus terreus and Aspergillus flavus). The activity data show that the metal complexes to be more potent/antimicrobial than the parent Shciff base ligand against one or more microbial species.  相似文献   

16.
A compartment ligand 2,6-bis[5′-chloro-3′-phenyl-1H-indole-2′-carboxamidyliminomethyl]-4-methylphenol was prepared and homobinuclear phenol-bridged Cu(II), Ni(II), Co(II), Zn(II), Cd(II), Hg(II), Fe(III), and Mn(II) complexes have been prepared by the template method using the precursors 2,6-diformyl-4-methylphenol, 5-chloro-3-phenylindole-2-carbohydrazide and metal chlorides in 1 : 2 : 2 ratio, respectively. The complexes were characterized by elemental analyses, conductivity measurements, magnetic susceptibility data, IR, NMR, FAB mass and ESR spectra, TGA, and powder XRD data. Cu(II), Co(II), Zn(II), Cd(II) and Hg(II) complexes exhibit square pyramidal geometry whereas Ni(II), Mn(II), and Fe(III) complexes are octahedral. Low magnetic moment values for Cu(II), Ni(II), Co(II), Fe(III), and Mn(II) complexes show antiferromagnetic spin-exchange interaction between two metal centers in binuclear complexes. The ligand and its complexes were tested for antibacterial activity against Escherichia coli and Staphyloccocus aureus, and antifungal activity against Aspergillus niger and Candida albicans.  相似文献   

17.
The distribution behaviour of the complexes formed between the terdentate ligand, pyridine-2-aldehyde-2'-pyridylhydrazone, and Zn(II), Cd(II), Fe(II), Cu(II), Ni(II), Mn(II) and Pd(II) has been studied between aqueous buffer and chloroform. Results are interpreted in terms of the complexes in the aqueous solution and the loss of a proton from each coordinated ligand to form an uncharged, extractable species. The suitability of PAPHY as a spectrophotometric reagent used in conjunction with a solvent extraction procedure is discussed.  相似文献   

18.
Conditions for the preparation of Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) 4-methylphthalates were investigated and their composition, solubility in water at 295 K and magnetic moments were determined. IR spectra and powder diffraction patterns of the complexes prepared with molar ratio of metal to organic ligand of 1.0:1.0 and general formula: M [ CH3C6H3(CO2)2nH2o (n=1-3) were recorded and their decomposition in air were studied. During heating the hydrated complexes are dehydrated in one (Mn, Co, Ni, Zn, Cd) or two steps (Cu) and next the anhydrous complexes decompose to oxides directly (Cu, Zn), with intermediate formation of carbonates (Mn, Cd), oxocarbonates (Ni) or carbonate and free metal (Co). The carboxylate groups in the complexes studied are mono- and bidentate (Co, Ni), bidentate chelating and bridging (Zn) or bidentate chelating (Mn, Cu, Cd). The magnetic moments for paramagnetic complexes of Mn(II), Co(II), Ni(II) and Cu(II) attain values 5.92, 5.05, 3.36 and 1.96 M.B., respectively. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
The formation constants of salicyl-4-amino-2,3-dimethyl-1-phenyl-3-pyrazoline-5-one (SAAP) complexes with 3d transition metal ions [Cu(II), Ni(II), Co(II), Zn(II) and Mn(II)] have been determined in 60% ethanol-water medium ofμ = 0.1M (NaCl) at 25°C. It is observed that the formation constants for chelates with 3d transition metals follow the order Mn(II) < Co(II) < Ni(II) < Zn(II) < Cu(II). The effects of metal ions, ionic radii, electronegativities and ionization potentials on chelate formation constants are discussed. Complexes of UO2(II) and Pd(II) have been synthesized and characterised by elemental analysis, electrolytic conductance, IR spectra and magnetic measurements. The ligand forms the complexes PdLCl and UO2L2,2H2O, where L is a uninegatively charged tridentate ligand (ONO donor sets).  相似文献   

20.
Novel complexes of Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II) and UO2(II) with a new Schiff base derived from 8-hydroxy-7-quinolinecarboxaldehyde and 2-aminoethanethiol (LH2) (system name: 2-(8-hydroxy-7-carboxalimino)ethanethiol.) have been prepared and characterized on the basis of analytical, thermal, magnetic moment, infrared, electronic, NMR and EPR spectral data. From the analytical, NMR and thermal data and stoichiometry of the complexes indicate that LH2 act as a dibasic tridentate ligand with ONS donors towards all the metal ions. The magnetic moment, electronic and EPR spectral data commensurate that the Mn(II), Fe(II), Ni(II) and UO2(II) complexes are dimeric with octahedral configuration while the Cu(II) and Zn(II) complexes are monomeric with square-planar and tetrahedral geometries, respectively. Various ligand field parameters Dq, B and beta for complex 5 was calculated. The complexes 3+4 have lower symmetries and the amount of distortion in terms of DT/DQ applying NSH "Hamiltonian Theory" has been evaluated which indicate that the complexes are moderately distorted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号