首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, the aim is to optimise the acoustical efficiency of T-shaped noise barriers whose top is covered with a series of wells. This research work uses an optimisation method in order to find the best noise barrier profile considering several variable parameters. Numerical simulations of the acoustical propagation are achieved by use of a 2D boundary element method code. The optimisation part is carried out with a global and direct evolutionary optimisation method: a genetic algorithm. The parameters to optimise are the shape of the protection (the depths of the wells on the crowning) and the flow resistivity of absorbing materials considered. The cost function to maximize is defined through a mean value of the acoustical efficiency of the protection compared to a reference configuration, averaged on several receiver points. Final results show significant optimised values of parameters for efficient protections in order to improve classical noise barriers.  相似文献   

2.
Road barrier diffracting caps have shown a renewed interest for several years since they give the opportunity of increasing the barrier efficiency without changing its overall height. First investigations on the efficiency of road barrier caps calculated with a boundary element method (BEM) have shown that the efficiency obtained with coherent line sources is underestimated compared to that with incoherent line sources, more representative of road traffic noise. The present work deals with the characterisation of the real performance of a T-shaped absorbing cap with road traffic noise conditions. Two different approaches are compared: on one hand calculations with the help of a BEM program able to achieve 2D and 2D simulations are made; on the other hand outdoor measurements on a test-wall using a maximum length sequence technique are carried out. The goal in the two approaches is to isolate the top edge diffracted sound field in order to determine an extrinsic value of octave band efficiency of the cap for many source-receiver pairs. These results integrated in a ray tracing prediction method enable the integration of air absorption along each ray path and give the real efficiency of such a device in the case of complex and realistic configurations for barriers of finite length.  相似文献   

3.
Outdoor sound propagation from road traffic is modelled by solving a boundary integral equation formulation of the wave equation using boundary element techniques in two dimensions. In the first model, the source representing a traffic stream can be considered as a coherent line source of sound. The results can then be transformed to derive a pseudo-three dimensional solution to the problem. In the second model the line source is incoherent. For receivers near the ground, the second model predicted significantly higher values of ground attenuation than the first. The first model generally produced better agreement with ground attenuation results obtained using the U.K. traffic noise prediction model. For conditions when a noise barrier was present and the ground was absorbent, the incoherent line source model generally predicted significantly higher values of attenuation than those from the barrier and ground attenuation calculated separately. Over a range of receiver positions and barrier heights a similar, but less marked effect was observed when the coherent line source model was used. On dual carriageway roads, it is possible to incorporate barriers on the central reservation as a noise control measure. These are “median” noise barriers. The incoherent line source model is used to assess the performance of median barriers in reducing noise when installed alone and also with associated roadside barriers. A sound absorbent median noise barrier 1m in height produced consistent values of insertion loss of between 1 and 2dB over the range of receiver positions and ground conditions considered. When the median barrier was used in conjunction with a roadside barrier it produced a consistent improvement in insertion loss of between 1 and 2 dB over the range of conditions considered.  相似文献   

4.
The paper describes an investigation about the acoustic performance of noise barriers with quadratic residue diffuser (QRD) tops, and with T-, Arrow-, Cylindrical and Y-shape profiles. A 2D boundary element method (BEM) is used to calculate the barrier insertion loss. The results of rigid and with absorptive coverage are also calculated for comparisons. Using QRD on the top surface of almost all barrier models presented here is found to improve the efficiency of barriers compare with using absorptive coverage at the examined receiver positions. T-shape and Arrow-shape barriers are also found to provide better performance than other shapes of barriers. The best shape of barriers for utilising QRD among the tested models is the T-shape profile barrier. It is found that reducing the design frequency of QRD shifts the performance improvement towards lower frequency, and therefore the most efficient model for traffic noise is a barrier covered with a QRD tuned to around 400 Hz.  相似文献   

5.
A previous paper [Applied Acoustics 66 (2005) 709-730] has shown that adding a quadratic residue diffuser (QRD) to the top of a T-shape barrier can provide better barrier performance than an equivalent purely absorptive barrier. In here, we extend the study to look at the performance when a QRD is made absorptive. This paper presents an investigation on the acoustic performance of a few welled-diffusers with different absorption ability on top of a T-shape noise barrier. The absorption properties of the diffusers are modified with different sequences, by filling the wells with fiberglass, by covering the well entrance with wire meshes, and by putting perforated sheet either on the top surface or inside the wells. A 2D Boundary Element Method (BEM) is used to calculate the barrier insertion loss. The numerical and experimental results on diffuser barriers with rigid and absorptive covers are compared. Among the tested models the best method of treating diffuser barriers with absorbent agents in the QRD is found to be a perorated sheet on top or inside the diffuser wells. It is found that increasing the absorption ability of QRD by fiberglass or high resistance wire meshes has negative effect on the efficiency of a QRD barrier. It is shown that, if the increase in absorption destroys the effect of resonance in wells, it will also have negative effect on the insertion loss performance of the QRD edge barrier.  相似文献   

6.
The focus of this paper is on the problem of finite impedances on both ground and barrier. Using a boundary element approach the surface treatment of the barrier and finite parts of the ground have been optimised to yield maximum insertion loss at multiple frequencies simultaneously. A 1 m high T-shaped barrier optimised in this way gives up to 8 dB higher insertion loss than a rigid barrier of equal shape. Optimisation of the acoustical properties of the ground below the source as well as those of the barrier improves the insertion loss dramatically for all receiver heights. The ground close to the source is the part of the ground that influences the insertion loss most, and in such a way that the radiation properties of the source are altered, and the radiated sound power is reduced. Having an optimised admittance only on the ground close to the barrier gives only a minor effect. A barrier-ground combination with specialised treatment on the ground close to the source and on the barrier top gives an increase in insertion loss that is comparable to the optimised results. The main conclusion of this paper is that specialised surface treatments provide largest effect if they are used on the ground surface.  相似文献   

7.
Although a considerable amount of research has been undertaken regarding the performance of T-profile noise barriers, the information available to the practicing highway engineer is confusing. For example, there is a widespread belief that the performance of a top edge, expressed as an insertion loss relative to that of the simple barrier on which it is mounted, is constant, irrespective of the relative locations of the source, barrier and receiver. In order to clarify the situation an investigation has been undertaken, using computer modelling, of the performance afforded by highway noise barriers with T-profile tops with different acoustic treatments. The relative insertion loss was found to increase systematically with increasing top width. Although the relative insertion loss afforded by a reflective T-top is small, significant attenuation can be obtained with an absorptive top. Examination of the effect on performance of the locations of source and receiver relative to that of the noise barrier indicated that, for source and receiver locations typical of those experienced for highway noise barriers, the relative insertion loss for a given width of T-top was a function of (a) the path difference between sound travelling to the receiver via the barrier top and direct sound from the source to the receiver and (b) the barrier height. Plots of relative insertion loss versus the path difference, normalised with respect to barrier heights, for a range of T-top widths and absorbent treatment, resulted in a collapse of data around well defined trend lines which offer the potential of being developed into a prediction method.  相似文献   

8.
The boundary element method (BEM) is a commonly used method to compute the insertion loss of noise barriers having arbitrary cross-sections. For large scale three-dimensional problems, however, the BEM is not feasible. On the other hand, standardized calculation methods for noise mapping are efficient, but shapes other than the straight barrier cannot be properly calculated. Attempts to merge these two approaches by using BEM to derive correction functions based on geometrical quantities such as source and target angle as well as the path length elongation between source and receiver caused by the barrier were usually focused on a small set of barrier types, dimensions, absorptive configurations, source or receiver positions. The main objective of this study is to investigate which functions based on the most common geometrical parameters are well suited for approximating the efficiency of different types of barriers, dimensions and absorptive configurations. To achieve this, numerous combinations of 7 different barrier types, different heights and widths as well as 3 different absorptive configurations were simulated using the 2D BEM for 8 different source positions. The octave-band-wise efficiency, i.e. the frequency-dependent gain in insertion loss compared to an equally high, fully reflective straight barrier was used as a basis for the correction functions. Linear as well as polynomial models were compared yielding a polynomial of third degree in the source and fourth degree in the target angle as the best model. Effects on the error using uniform sampling in the target angle instead of a uniform receiver grid as a basis for the correction functions are also investigated. Furthermore, wide-band efficiencies based on standardized traffic emission spectra are calculated showing small errors compared to single-band errors, in particular in the high-frequency range. A linear interpolation scheme is suggested to deal with barriers having dimensions not simulated in this work.  相似文献   

9.
郭文成  叶璇 《应用声学》2020,39(6):901-906
为了改善平行声屏障的性能,本文基于有限元仿真的方法对其陷波模态和插入损失进行了研究。其中,陷波模态是平行声屏障的固有性质,与其几何参数有关。当陷波模态处于共振频率时,平行声屏障内部声场的声能量达到峰值,同时声波垂直入射到声屏障的顶端,使声影区的衍射声能也达到峰值,最终导致插入损失显著下降。本文还对3种优化平行声屏障插入损失的方法进行了分析。结果表明,楔形和扩散型声屏障可降低声波的多次反射效应对插入损失的影响,但是对陷波模态的改善较小。而吸声型声屏障有效的抑制了陷波模态对插入损失的不利影响,从而改善了平行声屏障的性能。  相似文献   

10.
This paper describes the relative acoustical performances established by scale model testing of a number of relatively novel noise barriers in typical highway situations. The various barriers were thin, wide, T-profiled, cylindrically topped, corrugated, inclined, Y-profiled, arrow-profiled and of the thnadner principle, and some were treated with sound absorptive material. The highway situations involved a single barrier with a protected receiver (i.e., a receiver behind the barrier), a single barrier with a receiver on the opposite side of the highway, and parallel barriers, one on each side of the highway. In the single barrier, protected receiver case, higher noise reduction was found for wide top barriers, especially those of T-profile, and especially T-profile absorptive top barriers with cap widths of 0·6 m (2 ft) or more and of small cap thickness. Absorptive side treatment was effective in reducing a small, but measurable sound increase found when a reflective sided barrier is installed on the opposite side of the highway to receivers, and in reducing the degradation in performance that occurs when there is a barrier on each side of the highway rather than on just one.  相似文献   

11.
Y.J. Chu  C.M. Mak  X.J. Qiu 《Applied Acoustics》2008,69(12):1343-1349
Indoor barriers are now widely used for sound insulation. This paper examines the performance of indoor barriers in the low-medium frequency range and analyses the interaction between different natural modes of a room-barrier-room system. Morse proposed a theoretical model to calculate the sound field in a coupled-room, but this model neglects the surface integral of the boundary values of sound pressure. To estimate the performance of a barrier in an indoor environment, an analytical model is proposed that modifies the Green’s function for a non-rigid boundary enclosure and approximates the surface integral by a pre-estimated sound pressure based on Morse’s model. An additional approximation has been made in the proposed model to neglect the coupling area in the calculation of the surface integral. The proposed model used to predict the insertion loss of the barrier is verified by the experimental results using a 1:5 scale model. The predicted results agree well with the measured results at lower frequencies.  相似文献   

12.
The efficiency of a noise barrier largely depends on its geometry. Besides the height of the barrier and its top element form, the cross-section of the barrier contributes to its performance as well. The Boundary Element Method is often used as the numerical tool for simulating the behavior of proposed barrier shapes, both in 2D and 3D spaces. This paper deals with the optimization of barrier cross-section, not only by taking into account its acoustical performance (sound insertion loss), but also considering the economic feasibility of using various materials and various shapes for building the barrier. Therefore, the economic feasibility coefficient is defined and used as a final numerical value for comparing the overall efficiency of barrier design. The optimization process is done by using a genetic algorithm. Five basic forms of barrier elements and five building materials were pre-defined and characterized for the optimization process. The number of candidate units in the starting population was varied in order to examine the influence of population size on the final results. Barrier performance was evaluated for a point sound source in a 3D simulation space, and both its total rating based on the economic feasibility coefficient and its acoustical performance itself were evaluated and compared to a reference concrete barrier of the same height.  相似文献   

13.
Salomons建立的抛物方程(CNPE)方法可以预测非均匀环境中的声屏障插入损失。但是该方法在声屏障与声源距离较近时会产生较大误差。文中通过理论分析发现产生该问题的原因在于CNPE方法所使用的Gauss初始场仅适用于小仰角(10°以内)范围内的声波。为解决Gauss初始场引起的问题,推导了可以用于较大仰角声波的更高阶数的Gauss初始场。通过数值仿真对比了不同阶数的初始场在CNPE方法中的效果。结果表明:4阶初始场是最适合CNPE方法的初始场,将该初始场与CNPE方法相结合,可以准确预测当声屏障与声源距离较近时的插入损失.   相似文献   

14.
Performance of a noise barrier within an enclosed space   总被引:1,自引:0,他引:1  
The present study involved experimental, theoretical, and numerical analyses of the insertion loss provided by rigid noise barriers in an enclosed space. The existing classical diffuse-field theory may be unable to predict the actual sound pressure level distribution and barrier insertion loss for indoor applications. Although predictions made by the ray tracing method at high frequencies are reasonably satisfactory, the method is computer-intensive and time-consuming. We propose a new formula that incorporates the effects of diffraction theory and the reflection of sound between room surfaces. Our results indicate that the present formula provides more realistic and practical predictions of the barrier insertion loss than existing approaches.  相似文献   

15.
The scope of this paper is to study the performance of noise barriers treated with different diffusers with/without a perforated sheet. We investigated the barrier insertion loss using a 2D boundary element method (BEM). To obtain a better depth sequence, a Random Sequence Diffuser (RSD) was designed. The results clearly showed that employing a "RSD" instead of the most popular Schroeder diffusers (Quadratic Residue Diffuser and Primitive Root Diffuser) increased the acoustic performance. We also found that the diffuser performance improved by treating the diffuser with perforated sheets either on the top surface or inside the wells. The addition of these perforated sheets inside the "RSD" (barrier model "RPI2") improved the performance by 3.59 dB (A).  相似文献   

16.
Active control is used to improve the performance of noise barrier at low-frequency range and the excess insertion loss due to the active control system is influenced by the positions of the error sensors. The positional optimization for the error sensors in an active soft edge noise barrier was investigated. Both numerical simulations and experiments show that there is an optimum in the distance between the secondary sources and the error sensors, and that the error sensors should be placed above the secondary sources.  相似文献   

17.
The gain properties and valence subbands of InGaAsN/GaAsN quantum-well structures are numerically investigated with a self-consistent LASTIP simulation program. The simulation results show that the InGaAsN/GaAsN has lower transparency carrier density than the conventional InGaAsP/InP material system for 1.3-μm semiconductor lasers. The material gain and radiative current density of InGaAsN/GaAsN with different compressive strains in quantum well and tensile strains in barrier are also studied. The material gain and radiative current density as functions of strain in quantum well and barrier are determined. The simulation results suggest that the laser performance and Auger recombination rate of the 1.3-μm InGaAsN semiconductor laser may be markedly improved when the traditional GaAs barriers are replaced with the AlGaAs graded barriers.  相似文献   

18.
A ray model is developed and validated for the prediction of the insertion loss of barriers that are placed in front of a tall building in high-rise cities. The model is based on the theory of geometrical acoustics for sound diffraction at the edge of a barrier and multiple reflections by the barrier and fa?ade surfaces. It is crucial to include the diffraction and multiple reflection effects in the ray model, as they play important roles in determining the overall sound pressure levels for receivers located between the fa?ade and barrier. Comparisons of the ray model with indoor experimental data and wave-based boundary element formulation show reasonably good agreement over a broad frequency range. Case studies are also presented that highlight the significance of positioning the barrier relative to the noise-sensitive receivers in order to achieve improved shielding efficiency of the barrier.  相似文献   

19.
赵剑强  赵倩  陈莹  杨文娟  胡博  刘珺  吴沛 《应用声学》2018,37(4):582-586
基于理论推导和计算,给出了公路声屏障声学设计中,在考虑地面附加衰减情况下计算插入损失的方法。该方法综合考虑了有限长线声源无限长声屏障绕射声衰减量、有限长线声源地面衰减量及遮蔽角对插入损失的影响。通过与《声屏障声学设计和测量规范》(HJ/T90-2004)的计算结果的对比,验证了本文所给方法的精确性及可行性,并对规范所给地面衰减修正量进行了商榷。最后,给出了当预测点位于有限长路段中央法线上时,通过计算线声源地面衰减量得到计算插入损失所需参数值,再计算插入损失的简便方法。本研究为存在地面附加衰减情况下有限长声屏障插入损失计算提供了一个新的参考方法。  相似文献   

20.
In this paper, we propose a novel Schottky barrier MOSFET structure, in which the silicide source/drain is designed on the buried metal (SSDOM). The source/drain region consists of two layers of silicide materials. Two Schottky barriers are formed between the silicide layers and the silicon channel. In the device design, the top barrier is lower and the bottom is higher. The lower top contact barrier is to provide higher {on-state} current, and the higher bottom contact barrier to reduce the off-state current. To achieve this, ErSi is proposed for the top silicide and CoSi2 for the bottom in the n-channel case. The 50~nm n-channel SSDOM is thus simulated to analyse the performance of the SSDOM device. In the simulations, the top contact barrier is 0.2e~V (for ErSi) and the bottom barrier is 0.6eV (for CoSi2. Compared with the corresponding conventional Schottky barrier MOSFET structures (CSB), the high on-state current of the SSDOM is maintained, and the off-state current is efficiently reduced. Thus, the high drive ability (1.2mA/μm at Vds=1V, Vgs=2V) and the high Ion/Imin ratio (106) are both achieved by applying the SSDOM structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号