首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 463 毫秒
1.
Topological semimetals are newly discovered states of quantum matter, which have extended the concept of topological states from insulators to metals and attracted great research interest in recent years. In general, there are three kinds of topological semimetals, namely Dirac semimetals, Weyl semimetals, and nodal line semimetals. Nodal line semimetals can be considered as precursor states for other topological states. For example, starting from such nodal line states, the nodal line structure might evolve into Weyl points, convert into Dirac points, or become a topological insulator by introducing the spin–orbit coupling (SOC) or mass term. In this review paper, we introduce theoretical materials that show the nodal line semimetal state, including the all-carbon Mackay–Terrones crystal (MTC), anti-perovskite Cu3PdN, pressed black phosphorus, and the CaP3 family of materials, and we present the design principles for obtaining such novel states of matter.  相似文献   

2.
The gapless Weyl superfluid has been widely studied in the three-dimensional ultracold fermionic superfluid.In contrast to Weyl superfluid, there exists another kind of gapless superfluid with topologically protected nodal lines,which can be regarded as the superfluid counterpart of nodal line semimetal in the condensed matter physics, just as Weyl superfluid with Weyl semimetal. In this paper we study the ground states of the cold fermionic gases in cubic optical lattices with one-dimensional spin-orbit coupling and transverse Zeeman field and map out the topological phase diagram of the system. We demonstrate that in addition to a fully gapped topologically trivial phase, some different nodal line superfluid phases appear when the Zeeman field is adjusted. The presence of topologically stable nodal lines implies the dispersionless zero-energy flat band in a finite region of the surface Brillouin zone. Experimentally these nodal line superfluid states can be detected via the momentum-resolved radio-frequency spectroscopy. The nodal line topological superfluid provide fertile grounds for exploring exotic quantum matters in the context of ultracold atoms.  相似文献   

3.
Bi(2)Te(2)Se, a ternary tetradymite compound, has recently been identified to be a three-dimensional topological insulator. In this paper, we theoretically study the electronic structures of bulk and thin films of Bi(2)Te(2)Se employing spin-orbit coupling (SOC) self-consistently with density-functional theory. It is found that SOC plays an important role in determining the electronic properties of Bi(2)Te(2)Se. A finite bandgap opens up in the surface states of Bi(2)Te(2)Se thin films due to the hybridization of the top and bottom surface states of films. The intrinsic Bi(2)Te(2)Se thin films of three or more quintuple layers exhibit a robust topological nature of electronic structure with the Fermi energy intersecting the Dirac cone of the surface states only once between time-reversal-invariant momenta. These characteristics of Bi(2)Te(2)Se are similar to the topological behavior of Bi(2)Te(3), promising a variety of potential applications in nanoelectronics and spintronics.  相似文献   

4.
Topological states of matter possess bulk electronic structures categorized by topological invariants and edge/surface states due to the bulk-boundary correspondence. Topological materials hold great potential in the development of dissipationless spintronics, information storage and quantum computation, particularly if combined with magnetic order intrinsically or extrinsically. Here, we review the recent progress in the exploration of intrinsic magnetic topological materials, including but not limited to magnetic topological insulators, magnetic topological metals, and magnetic Weyl semimetals. We pay special attention to their characteristic band features such as the gap of topological surface state, gapped Dirac cone induced by magnetization (either bulk or surface), Weyl nodal point/line and Fermi arc, as well as the exotic transport responses resulting from such band features. We conclude with a brief envision for experimental explorations of new physics or effects by incorporating other orders in intrinsic magnetic topological materials.  相似文献   

5.
《Physics letters. A》2020,384(17):126375
Based on the first-principle calculations and k⋅p effective model analysis, we predicted a new topological semimetal (TSM) MgBi2O6. Without spin-orbit-coupling (SOC) and under the generalized-gradient-approximation (GGA), MgBi2O6 is a nodal-line semimetal. When the exchange-correlation energy was changed to HSE06, MgBi2O6 was trivial insulator in the equilibrium volume, but it became TSM under 7% hydrostatic tensile strain. MgBi2O6 might be an important platform to study the topological properties because of the two following advantages for measurements: (1) The nodal line, drumhead-liked surface state and Fermi Arc are very closely to the Fermi level; (2) The band structure is very “clean” (no other bulk bands except the related inverted conduction and valence bands around the Fermi level), which avoids the surface states been embedded into the bulk states.  相似文献   

6.
We consider the dimensional crossover in the topological matter, which involves the transformation of different types of topologically protected zeroes in the fermionic spectrum. In the considered case, the multiple Dirac (Fermi) point in quasi 2-dimensional system evolves into the flat band on the surface of the 3-dimensional system when the number of atomic layers increases. This is accompanied by formation of the spiral nodal lines in the bulk. We also discuss the topological quantum phase transition at which the surface flat band shrinks and changes its chirality, while the nodal spiral changes its helicity.  相似文献   

7.
由于在磁性材料体系中缺失时间反演对称性,导致nodal chain被破坏,所以nodal chain通常存在于非磁材料中。但是,磁性材料EuAuBi是与常规磁性材料不同。本工作以第一性原理计算为研究方法,预言了在不考虑自旋轨道相互作用时,磁性材料EuAuBi体系为新型拓扑nodal chain半金属;当考虑自旋轨道耦合时,EuAuBi会退化为外尔半金属。对于非磁材料BaAuBi来说,在不考虑自旋轨道相互作用时,它同样是一种拓扑nodal chain半金属;当考虑自旋轨道相互作用时,由于C3旋转对称性的存在,BaAuBi会退化为狄拉克半金属。在XAuBi (X=Eu, Ba)中发现nodal chain半金属,会促进对六角材料的拓扑性质研究以及开拓其新实际应用领域。  相似文献   

8.
Based on first principles calculations and the K·p effective model, we propose that alkali metal deposition on the surface of hexagonal XN2 (X= Cr, Mo, W) nanosheets induces topologically nontrivial phases in these systems. When spin orbit coupling (SOC) is disregarded, the electron-like conduction band from N-pz orbitals can be considered to cross the hole-like valence band from X-d2z orbitals, thereby giving rise to a topological nodal line state in lithium-functionalized XN2 sheets (Li2MoN2 and Li2WN2). Such band crossing is protected by the existence of mirror reflection and time reversal symmetry. More interestingly, the bands cross exactly at the Fermi level, and the linear dispersion regions of such band crossings extend to as high as 0.9 eV above the crossing. For Li2CrN2, the results reveal the emergence of a Dirac cone at the Fermi level. Our calculations show that lattice compression decreases the thickness of a Li2CrN2 nanosheet, leading to phase transition to a nodal line semimetal. The evolution of the band gap of Li2XN2 at the Γ point indicates that the nontrivial topological character of Li2XN2 nanolayers is stable over a large strain range. When SOC is included, the band crossing point is gapped out giving rise to quantum spin Hall states in Li2CrN2 nanosheets, while for Li2MoN2, the SOC-induced gap at the crossing points is negligible.  相似文献   

9.
Dirac semimetals (DSMs) are an important class of topological states of matter. Here, focusing on DSMs of band inversion type, we investigate their boundary modes from the effective model perspective. We show that in order to properly capture the boundary modes, k-cubic terms must be included in the effective model, which would drive an evolution of surface degeneracy manifold from a nodal line to a nodal point. Sizable k-cubic terms are also needed for better exposing the topological hinge modes in the spectrum. Using first-principles calculations, we demonstrate that this feature and the topological hinge modes can be clearly exhibited in β-CuI. We extend the discussion to magnetic DSMs and show that the time-reversal symmetry breaking can gap out the surface bands and hence is beneficial for the experimental detection of hinge modes. Furthermore, we show that magnetic DSMs serve as a parent state for realizing multiple other higher-order topological phases, including higher-order Weyl-point/nodal-line semimetals and higher-order topological insulators.  相似文献   

10.
Topological media are systems whose properties are protected by topology and thus are robust to deformations of the system. In topological insulators and superconductors the bulk-surface and bulk-vortex correspondence gives rise to the gapless Weyl, Dirac or Majorana fermions on the surface of the system and inside vortex cores. Here we show that in gapless topological media, the bulk-surface and bulk-vortex correspondence is more effective: it produces topologically protected gapless fermions without dispersion—the fiat band. Fermion zero modes forming the flat band are localized on the surface of topological media with protected nodal lines [A. P. Schnyder and S. Ryu, Phys. Rev. B 84, 060504(R) (2011); T. T. Heikkil G. E. Volovik, JETP Lett. 93, 59 (2011)] and in the vortex core in systems with topologically protected Fermi points (Weyl points) [G. E. Volovik, JETP Lett. 93, 66 (2011)]. Flat band has an extremely singular density of states, and we show that this property may give rise in particular to surface superconductivity which could exist even at room temperature.  相似文献   

11.
方辰  翁红明  戴希  方忠 《中国物理 B》2016,25(11):117106-117106
We review the recent,mainly theoretical,progress in the study of topological nodal line semimetals in three dimensions.In these semimetals,the conduction and the valence bands cross each other along a one-dimensional curve in the three-dimensional Brillouin zone,and any perturbation that preserves a certain symmetry group(generated by either spatial symmetries or time-reversal symmetry) cannot remove this crossing line and open a full direct gap between the two bands.The nodal line(s) is hence topologically protected by the symmetry group,and can be associated with a topological invariant.In this review,(ⅰ) we enumerate the symmetry groups that may protect a topological nodal line;(ⅱ) we write down the explicit form of the topological invariant for each of these symmetry groups in terms of the wave functions on the Fermi surface,establishing a topological classification;(ⅲ) for certain classes,we review the proposals for the realization of these semimetals in real materials;(ⅳ) we discuss different scenarios that when the protecting symmetry is broken,how a topological nodal line semimetal becomes Weyl semimetals,Dirac semimetals,and other topological phases;and(ⅴ) we discuss the possible physical effects accessible to experimental probes in these materials.  相似文献   

12.
We introduce a two-band model of three-dimensional nodal line semimetals (NLSMs), the Fermi surface of which at half-filling may form various one-dimensional configurations of different topology. We study the symmetries and “drumhead” surface states of the model, and find that the transitions between different configurations, namely, the Lifshitz transitions, can be identified solely by the number of gap-closing points on some high-symmetry planes in the Brillouin zone. A global phase diagram of this model is also obtained accordingly. We then investigate the effect of some extra terms analogous to a two-dimensional Rashba-type spin–orbit coupling. The introduced extra terms open a gap for the NLSMs and can be useful in engineering different topological insulating phases. We demonstrate that the behavior of surface Dirac cones in the resulting insulating system has a clear correspondence with the different configurations of the original nodal lines in the absence of the gap terms.  相似文献   

13.
Bulk Bi2Te3 is known to be a topological insulator. We investigate surface states of Bi2Te3(111) thin films of one to six quintuple layers using density-functional theory including spin-orbit coupling. We construct a method to identify topologically protected surface states of thin film topological insulators. Applying this method to Bi2Te3 thin films, we find that the topological nature of the surface states remains robust with the film thickness and that the films of three or more quintuple layers have topologically nontrivial surface states, which agrees with experiments.  相似文献   

14.
《Physics letters. A》2020,384(19):126494
Magnetic topological materials have attracted increasingly attentions in recent years due to their exotic electronic behaviors emerging from the couplings of topological, magnetic, and crystalline symmetries. In this work, based on the first-principles calculations, we propose that hexagonal wurtzite MnO is a magnetic topological spin-gapless semi-half-metal with two pairs of type-I Weyl fermions near the Fermi level in ferromagnetic state, which is a promising candidate material in spintronic and piezoelectric applications. In the absence of spin-orbit coupling (SOC), it hosts one triple degeneracy point (TP) in the irreducible Brillouin zone. Owing to weak SOC, the TP splits into two type-I Weyl points that are very close to each other. The Fermi arc surface states connecting the projected Weyl points with opposite chirality are observed. Our results therefore provide a wonderful platform to study the interplay of magnetism and topology.  相似文献   

15.
龚士静  段纯刚 《物理学报》2015,64(18):187103-187103
自旋轨道耦合是电子自旋与轨道相互作用的桥梁, 它提供了利用外电场来调控电子的轨道运动、进而调控电子自旋状态的可能. 固体材料中有很多有趣的物理现象, 例如磁晶各向异性、自旋霍尔效应、拓扑绝缘体等, 都与自旋轨道耦合密切相关. 在表面/界面体系中, 由于结构反演不对称导致的自旋轨道耦合称为Rashba自旋轨道耦合, 它最早在半导体材料中获得研究, 并因其强度可由栅电压灵活调控而备受关注, 成为电控磁性的重要物理基础之一. 继半导体材料后, 金属表面成为具有Rashba自旋轨道耦合作用的又一主流体系. 本文以Au(111), Bi(111), Gd(0001)等为例综述了磁性与非磁性金属表面Rashba自旋轨道耦合的研究进展, 讨论了表面电势梯度、原子序数、表面态波函数的对称性, 以及表面态中轨道杂化等因素对金属表面Rashba自旋轨道耦合强度的影响. 在磁性金属表面, 同时存在Rashba自旋轨道耦合作用与磁交换作用, 通过Rashba自旋轨道耦合可能实现电场对磁性的调控. 最后, 阐述了外加电场和表面吸附等方法对金属表面Rashba自旋轨道耦合的调控. 基于密度泛函理论的第一性原理计算和角分辨光电子能谱测量是金属表面Rashba自旋轨道耦合的两大主要研究方法, 本文综述了这两方面的研究结果, 对金属表面Rashba自旋轨道耦合进行了深入全面的总结和分析.  相似文献   

16.
The holographic duality allows to construct and study models of strongly coupled quantum matter via dual gravitational theories.In general such models are characterized by the absence of quasiparticles, hydrodynamic behavior and Planckian dissipation times. One particular interesting class of quantum materials are ungapped topological semimetals which have many interesting properties from Hall transport to topologically protected edge states. We review the application of the holographic duality to this type of quantum matter including the construction of holographic Weyl semimetals, nodal line semimetals, quantum phase transition to trivial states(ungapped and gapped), the holographic dual of Fermi arcs and how new unexpected transport properties,such as Hall viscosities arise. The holographic models promise to lead to new insights into the properties of this type of quantum matter.  相似文献   

17.
Monolayer molybdenum disulfide(MoS_2) has a honeycomb crystal structure.Here,with considering the triangular sublattice of molybdenum atoms,a simple tight-binding Hamiltonian is introduced(derived) for studying the phase transition and topological superconductivity in MoS_2 under uniaxial strain.It is shown that spin-singlet p+ip wave phase is a topological superconducting phase with nonzero Chern numbers.When the chemical potential is greater(smaller) than the spin-orbit coupling(SOC) strength,the Chern number is equal to four(two) and otherwise it is equal to zero.Also,the results show that,if the superconductivity energy gap is smaller than the SOC strength and the chemical potential is greater than the SOC strength,the zero energy Majorana states exist.Finally,we show that the topological superconducting phase is preserved under uniaxial strain.  相似文献   

18.
We propose that the hexagonal crystal form of MoC is a stable and new type of topological semimetal. It hosts an exotic Fermi surface consisting of two concentric nodal rings in the presence of spin-orbit coupling, and possesses four pairs of triply degenerate points(TDPs) in the vicinity of the Fermi energy. The coexistence of the nodal ring Fermi surface and TDPs in MoC leads to extraordinary properties such as distinguishable drumhead surface states and manipulatable new fermions, which make MoC a fertile platform for in-depth understanding of topological phenomena and a potential candidate material for topological electronic devices.  相似文献   

19.
作为凝聚态物理中一类新奇准粒子态,Majorana零能模(Majorana zero mode)由于可用来实现拓扑量子计算而成为当前的研究热点.理论预言,Majorana零能模可作为特殊的束缚态出现在一些拓扑超导体的磁通涡旋中.但实际超导体磁通中还可能存在其他低能束缚态或杂质态,这给Majorana零能模的辨别和具体应用带来了困难.目前实验上寻找合适的拓扑超导体系、分辨出清晰的Majorana零能模仍然是十分迫切的.本文主要介绍最近利用高能量分辨的扫描隧道显微镜,对电子掺杂铁硒类超导体(Li,Fe)OHFeSe和单层FeSe/SrTiO3磁通态进行的研究.实验上在前者的自由磁通中观测到清晰的零能模,并进一步测量到Majorana零能模的重要特征—量子化电导.而在后者磁通中只发现常规Caroli-de Gennes-Matricon(CdGM)束缚态,反映出s波对称性的特征.这系列实验既为Majorana零能模物性的进一步研究提供了合适平台,也为澄清铁基超导体中拓扑超导电性的来源提供了线索.  相似文献   

20.
We discuss the dispersionless spectrum with zero energy in the linear topological defects—vortices. The flat band emerges inside the vortex living in the bulk medium containing topologically stable Fermi points in momentum space. The boundaries of the flat band in the vortex are determined by projections of the Fermi points in bulk to the vortex axis. This bulk-vortex correspondence for flat band is similar to the bulk-surface correspondence discussed earlier in the media with topologically protected lines of zeroes. In the latter case the flat band emerges on the surface of the system, and its boundary is determined by projection of the bulk nodal line on the surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号