首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Hexagonal wurtzite MnO in ferromagnetic state: A magnetic topological spin-gapless Weyl semimetal
Institution:The Center for Advanced Quantum Studies and Department of Physics, Beijing Normal University, 100875 Beijing, China
Abstract:Magnetic topological materials have attracted increasingly attentions in recent years due to their exotic electronic behaviors emerging from the couplings of topological, magnetic, and crystalline symmetries. In this work, based on the first-principles calculations, we propose that hexagonal wurtzite MnO is a magnetic topological spin-gapless semi-half-metal with two pairs of type-I Weyl fermions near the Fermi level in ferromagnetic state, which is a promising candidate material in spintronic and piezoelectric applications. In the absence of spin-orbit coupling (SOC), it hosts one triple degeneracy point (TP) in the irreducible Brillouin zone. Owing to weak SOC, the TP splits into two type-I Weyl points that are very close to each other. The Fermi arc surface states connecting the projected Weyl points with opposite chirality are observed. Our results therefore provide a wonderful platform to study the interplay of magnetism and topology.
Keywords:Magnetic Weyl semimetal  Transition metal oxide  First-principles calculations
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号