首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
用聚乙二醇(PEG)定点修饰天花粉蛋白(TCS), 并比较了修饰前后TCS的生物活性、免疫原性及药代动力学等诸多性质. 选择TCS分子上可能的抗原决定簇位点KR173-174进行定点突变, 并将所构建的突变体TCSKR173-174CG在大肠杆菌中表达及纯化. 通过该突变体第173位引入的半胱氨酸残基进行PEG定点修饰. 通过比较研究, 分析所构建的PEG修饰型TCS的DNA酶活性、致核糖体失活活性、免疫原性、急性毒性以及药代动力学性质, 研究结果表明, 所构建的突变型TCS(mTCS)的活性与野生型TCS(wTCS)活性几乎相当, 而免疫原性已显著降低. PEG修饰型TCS虽有活性下降, 但其免疫原性、急性毒性以及药代动力学性质得到显著提升. 表明通过基因工程及化学修饰方法改造TCS是可行的, 所构建的突变型及PEG修饰型TCS值得进一步研究.  相似文献   

2.
采用分子动力学模拟方法研究极端嗜热性核糖结合蛋白(tteRBP)的嗜热机理.在常温(300 K)和最佳活性温度(375 K)时,分别对tteRBP分子进行动力学模拟,结果表明,整体分子均保持结构稳定,但分子内部的协调运动不同.在375 K时蛋白整体柔性显著提高,使分子能够局部调整构象以适应极端高温.蛋白结构变化的分析也确认了高温时构象局部微调对蛋白极端高温稳定性的关键作用.  相似文献   

3.
胡建平  唐典勇  范晶  常珊 《化学学报》2010,68(15):1499-1506
对HIV-1整合酶(IN)野生体(WT), G140A/G149A和T66I/S153Y突变体分别进行了5 ns的分子动力学(MD)模拟, 并用成簇和动力学交叉相关图(DCCM)分析了突变前后的构象变化. 整体结构分析表明, 突变后IN的活性口袋尺寸变化不大, T66I/S153Y突变体分子的整体运动性提高, 而G140A/G149A突变体的功能loop区柔性明显上升. IN WT的方均根涨落(RMSF)模拟值与B因子实验值的较高相关性证明了柔性分析的合理性. 通过成簇分析发现, IN在突变后功能loop区构象有开合运动, 构象开放的概率是: 体系G140A/G149A>T66I/S153Y>WT. 最后DCCM分析结果表明, 功能性分区的弱化以及DDE基序残基运动相关性的降低均有可能是突变体G140A/G149A和T66I/S153Y产生抗药性的原因. 模拟结果对理解IN突变体的抗药机理以及为基于HIV-1 IN的药物分子设计提供了理论帮助.  相似文献   

4.
对HIV-1整合酶(IN)野生体(WT),G140A/G149A和T66I/S153Y突变体分别进行了5 ns的分子动力学(MD)模拟,并用成簇和动力学交叉相关图(DCCM)分析了突变前后的构象变化.整体结构分析表明,突变后IN的活性口袋尺寸变化不大,T66I/S153Y突变体分子的整体运动性提高,而G140A/G149A突变体的功能loop区柔性明显上升.IN WT的方均根涨落(RMSF)模拟值与B因子实验值的较高相关性证明了柔性分析的合理性.通过成簇分析发现,IN在突变后功能loop区构象有开合运动,构象开放的概率是:体系G140A/G149A>T66I/S153Y>WT.最后DCCM分析结果表明,功能性分区的弱化以及DDE基序残基运动相关性的降低均有可能是突变体G140A/G149A和T66I/S153Y产生抗药性的原因.模拟结果对理解IN突变体的抗药机理以及为基于HIV-1 IN的药物分子设计提供了理论帮助.  相似文献   

5.
运用Discovery Studio 4.5软件,通过同源建模及分子动力学优化获得柞蚕小吐白水软化病毒(Ap IV)3C蛋白酶的3D结构;通过分子对接对天然产物库进行虚拟筛选,得到1个Ap IV 3C蛋白酶的有效抑制剂3',4',5,7-四羟基异黄酮(Orobol).分子对接和分子动力学(MD)模拟结果进一步证明Orobol能稳定结合于Ap IV 3C蛋白酶的结合口袋处.体内外的Ap IV病毒抑制实验结果表明,Orobol具有良好的抗病毒活性.  相似文献   

6.
运用AutoDock4软件进行了分子对接研究, 得到了7种咪唑啉药物分子与Kir6.2的作用位点, 并发现了2个活性位点区域; 依法可生(Efaroxan)、可乐定(Clonidine)、西苯唑啉(Cibenzoline)和Bl11282位于残基H175, K67和W68形成的活性口袋中, 主要作用方式为氢键相互作用; 而Rx871024、烯丙尼定(Alinidine)和Ly389382位于残基F168, M169和I296形成的疏水口袋中, 在Kir6.2的通道孔中央, 没有氢键形成, 主要作用为疏水相互作用. 咪唑啉类药物与Kir6.2相互作用活性位点的理论预测将有助于该药物在胰腺β细胞中调控胰岛素分泌机制的研究.  相似文献   

7.
通过量子化学计算,确定嗜热菌Pyrococcus horikoshii OT3的PH1704蛋白酶别构位点的关键残基为Arg113,Tyr120和Asn129. 其中,Arg113及Asn129与别构抑制剂结合,参与别构调控. Tyr120残基位于亚基交界面附近,并与亲核残基Cys100之间以氢键相连,可通过影响亚基聚合来影响酶的亲核催化. DJ-1超家族的4种构建蛋白的结构显示,120位点位于亚基交界面处,影响亚基的聚合,进而影响蛋白酶的活力,并间接参与别构调控. 分子生物学实验显示,突变体R113T/Y120P/N129D的kcat/km(L·μmol-1·min-1)值是野生型kcat/km值的6倍,h系数由野生型的0.86转变为1.3,负协同效应消失. 113和129位点处阴离子别构剂脱离,从而破坏113,120和129位点间的封闭环结构,使AC交界面α7螺旋(124~129,524~529)间聚合度增强;120位点残基由Tyr转变为Pro,与Cys100间氢键断裂,亲核进攻的阻力减小,从而使酶活力提高,别构负调控消失.  相似文献   

8.
为了理解非核苷类逆转录酶抑制剂(NNRTIs)与HIV-1逆转录酶(RT)的相互作用机制,利用新力场ff12SB对未结合和结合Efavirenz (EFV)逆转录酶的三种RT大分子体系分别进行了100 ns的长时间动力学模拟。通过分析EFV对RT结构的影响、不同残基柔性和不同体系构象的动力学行为等,发现EFV的结合会导致RT结构变化,从而影响RT的活性;证实了EFV的“分子楔”作用;还发现EFV的结合不但引起“拇指关节炎”,而且引起轻度“手指关节炎”;整个模拟过程中没有出现不同构象间的跃迁,但是无别构分子时的RT张开构象表现出明显的闭合倾向。这些结果有助于理解NNRTIs的抑制机制和RT构象变化的动力学性质。另外,还比较分析了模拟方法对计算结果的影响,对大分子体系的动力学模拟具有重要借鉴意义。  相似文献   

9.
实验优化了重组蛋白C端多肽(SjLys-C)的E.coli Rosetta(DE3)pLysS表达系统,将重组质粒pET-32a(+)-SjLys-C转入有助于蛋白二硫键正确折叠的新表达宿主E.Coli Rosetta-GamiB(DE3)pLysS中.SDS-PAGE分析表明,重组蛋白SjLys-C在宿主中得到高效可溶表达.抑菌实验结果表明,重组蛋白SjLys-C具有较高的抑菌活性;经100℃处理40 min后,蛋白SjLys-C的抑菌活性提高.分子动力学(MD)模拟表明,SjLys-C蛋白具有高度的热稳定性,蛋白热处理后未变性,仍维持完整的三级结构.但在热处理过程中,SjLys-C多肽的氨基酸残基随温度变化发生内部结构的重排.其中C端区、N端区和活性区域(10~20)内氨基酸残基的柔性增加,蛋白整体构象展开,导致被包埋在内部的2个活性位点(Ser18,His48)暴露,并且它们之间的距离缩短;而活性区域(37~47)内氨基酸残基的构象调整,导致区域结构紧凑,使2个活性位点间的距离改变.  相似文献   

10.
结合定量结构-活性相关(QSAR)技术和分子对接、分子动力学(MD)模拟,研究了新型酰胺-膦酸酯类衍生物与可溶性环氧化物水解酶(hsEH)结合的相互作用特征.二维QSAR模型表现出较好的拟合能力和预测能力(r~2=0.942,q2=0.918),并且模型表明酰胺-膦酸酯类衍生物中C—N键的频数对hsEH活性抑制能力具有重要影响.采用比较分子力场分析方法(CoMFA)和比较分子相似性指数分析方法(CoMSIA)建立了相关性显著、预测能力强的三维QSAR定量模型(CoMFA:r~2=0.986,q2=0.619;CoMSIA:r~2=0.912,q2=0.630),模型指出疏水作用力、静电作用力和氢键作用力对hsEH活性抑制能力有重要的影响.二维QSAR模型的预测结果更为准确,三维QSAR模型更为直观地表现了由于分子结构差异导致不同的力场效应对预测结果的影响.分子对接结果指出了分子内酰胺基团、膦酸酯基团、以及—NH—分子结构能与氨基酸残基HIS524,ASP335,TYR383,TYR466,GLN384和Trp525形成稳定氢键来增加结合的稳定性,并且小分子受到氢键作用力的同时还受到结合位点疏水残基的强疏水作用力和芳香性π环之间相互吸引的π-π堆积的非共价键作用.分子动力学模拟通过残基结合后的柔性差异变化验证了结合位点分子对接结果的可靠性,结合自由能也为对接作用机制的合理性提供了验证.  相似文献   

11.
12.
Since December 2019, novel coronavirus disease 2019 (COVID-19) pandemic has caused tremendous economic loss and serious health problems worldwide. In this study, we investigated 14 natural compounds isolated from Amphimedon sp. via a molecular docking study, to examine their ability to act as anti-COVID-19 agents. Moreover, the pharmacokinetic properties of the most promising compounds were studied. The docking study showed that virtually screened compounds were effective against the new coronavirus via dual inhibition of SARS-CoV-2 RdRp and the 3CL main protease. In particular, nakinadine B (1), 20-hepacosenoic acid (11) and amphimedoside C (12) were the most promising compounds, as they demonstrated good interactions with the pockets of both enzymes. Based on the analysis of the molecular docking results, compounds 1 and 12 were selected for molecular dynamics simulation studies. Our results showed Amphimedon sp. to be a rich source for anti-COVID-19 metabolites.  相似文献   

13.
The seven transmembrane helices G-protein-coupled receptors (GPCRs) form one of the largest superfamilies of signaling proteins found in humans. Homology modeling, molecular docking, and molecular dynamics (MD) simulation were carried out to construct a reliable model for CCR1 as one of the GPCRs and to explore the structural features and the binding mechanism of BX471 as one of the most potent CCR1 inhibitors. In this study, BX471 has been docked into the active site of the CCR1 protein. After docking, one 20 ns MD simulation was performed on the CCR1-ligand complex to explore effects of the presence of lipid membrane in the vicinity of the CCR1-ligand complex. At the end of the MD simulation, a change in the position and orientation of the ligand in the binding site was observed. This important observation indicated that the application of MD simulation after docking of ligands is useful. Explorative runs of molecular dynamics simulation on the receptor-ligand complex revealed that except for Phe85, Phe112, Tyr113, and Ile259, the rest of the residues in the active site determined by docking are changed. The results obtained are in good agreement with most of the experimental data reported by others. Our results show that molecular modeling and rational drug design for chemokine targets is a possible approach.  相似文献   

14.
The haloalkane dehalogenase LinB from Sphingomonas paucimobills UT26 was found to transform the 1,2,3-trichloropropane(TCP) into inorganic halide ions and 2,3-dichloro-1-propanol although the catalytic activity is very low(Kcat=0.005 s-1).In this study,molecular dynamics simulation and docking studies were performed to investigate the binding of TCP to LinB.The docking results indicate that LinB does not restrict TCP to be bound productively in the active site and the water-mediated inhibition occurs in the...  相似文献   

15.
The group IVA cytosolic phospholipase A(2) (GIVA cPLA(2)) plays a central role in inflammation. Long chain 2-oxoamides constitute a class of potent GIVA cPLA(2) inhibitors that exhibit potent in vivo anti-inflammatory and analgesic activity. We have now gained insight into the binding of 2-oxoamide inhibitors in the GIVA cPLA(2) active site through a combination of molecular docking calculations and molecular dynamics simulations. Recently, the location of the 2-oxoamide inhibitor AX007 within the active site of the GIVA cPLA(2) was determined using a combination of deuterium exchange mass spectrometry followed by molecular dynamics simulations. After the optimization of the AX007-GIVA cPLA(2) complex using the docking algorithm Surflex-Dock, a series of additional 2-oxoamide inhibitors have been docked in the enzyme active site. The calculated binding affinity presents a good statistical correlation with the experimental inhibitory activity (r(2) = 0.76, N = 11). A molecular dynamics simulation of the docking complex of the most active compound has revealed persistent interactions of the inhibitor with the enzyme active site and proves the stability of the docking complex and the validity of the binding suggested by the docking calculations. The combination of molecular docking calculations and molecular dynamics simulations is useful in defining the binding of small-molecule inhibitors and provides a valuable tool for the design of new compounds with improved inhibitory activity against GIVA cPLA(2).  相似文献   

16.
A combined molecular dynamics simulation and multiple ligand docking approach is applied to study the binding specificity of acetylcholinesterase (AChE) with its natural substrate acetylcholine (ACh), a family of substrate analogues, and choline. Calculated docking energies are well correlated to experimental k(cat)/K(M) values, as well as to experimental binding affinities of a related series of TMTFA inhibitors. The "esteratic" and "anionic" subsites are found to act together to achieve substrate binding specificity. We find that the presence of ACh in the active site of AChE not only stabilizes the setup of the catalytic triad but also tightens both subsites to achieve better binding. The docking energy gained from this induced fit is 0.7 kcal/mol for ACh. For the binding of the substrate tailgroup to the anionic subsite, both the size and the positive charge of the tailgroup are important. The removal of the positive charge leads to a weaker binding of 1 kcal/mol loss in docking energy. Substituting each tail methyl group with hydrogen results in both an incremental loss in docking energy and also a decrease in the percentage of structures docked in the active site correctly set up for catalysis.  相似文献   

17.
To investigate the possible binding mode of E-64 (N-[N-(L-3-trans-carboxyoxirane-2-carbonyl)-L-leucyl]agmatine), a potent cysteine protease inhibitor, to papain active site, molecular dynamics simulations were applied to two complex forms: R- and S- configurational forms of E-64 C2 atom for the covalent bond formation with the papain Cys-25 SH group. The tertiary structures of the papain-E-64 complexes were built by visual interactive modelling and the energy minimization technique, and were subjected to the dynamics simulations of 10 ps. Although no significant difference was observed between the potential energies of energy-minimized R- and S-complex forms, the molecular dynamics simulations suggested that the hydrogen bonding mode of the former form is more advantageous than that of the latter one. Comparing with the hydrogen bonds observed in the papain-E-64 complex crystal, it could be concluded that the present molecular dynamics simulation reflects well the three-dimensional structure concerning the interaction of E-64 with the papain active site. The conformational characteristics of E-64 and its possible interaction mode with papain were also discussed.  相似文献   

18.
Human T-cell leukemia virus type 1 (HTLV-1) protease is an attractive target when developing inhibitors to treat HTLV-1 associated diseases. To study the catalytic mechanism and design novel HTLV-1 protease inhibitors, the protonation states of the two catalytic aspartic acid residues must be determined. Free energy simulations have been conducted to study the proton transfer reaction between the catalytic residues of HTLV-1 protease using a combined quantum mechanical and molecular mechanical (QM/MM) molecular dynamics simulation. The free energy profiles for the reaction in the apo-enzyme and in an enzyme – substrate complex have been obtained. In the apo-enzyme, the two catalytic residues are chemically equivalent and are expected to be both unprotonated. Upon substrate binding, the catalytic residues of HTLV-1 protease evolve to a singly protonated state, in which the OD1 of Asp32 is protonated and forms a hydrogen bond with the OD1 of Asp32′, which is unprotonated. The HTLV-1 protease–substrate complex structure obtained from this simulation can serve as the Michaelis complex structure for further mechanistic studies of HTLV-1 protease while providing a receptor structure with the correct protonation states for the active site residues toward the design of novel HTLV-1 protease inhibitors through virtual screening.  相似文献   

19.
20.
The SARS-CoV-2 virus is causing COVID-19 resulting in an ongoing pandemic with serious health, social, and economic implications. Much research is focused in repurposing or identifying new small molecules which may interact with viral or host-cell molecular targets. An important SARS-CoV-2 target is the main protease (Mpro), and the peptidomimetic α-ketoamides represent prototypical experimental inhibitors. The protease is characterised by the dimerization of two monomers each which contains the catalytic dyad defined by Cys145 and His41 residues (active site). Dimerization yields the functional homodimer. Here, our aim was to investigate small molecules, including lopinavir and ritonavir, α-ketoamide 13b, and ebselen, for their ability to interact with the Mpro. The sirtuin 1 agonist SRT1720 was also used in our analyses. Blind docking to each monomer individually indicated preferential binding of the ligands in the active site. Site-mapping of the dimeric protease indicated a highly reactive pocket in the dimerization region at the domain III apex. Blind docking consistently indicated a strong preference of ligand binding in domain III, away from the active site. Molecular dynamics simulations indicated that ligands docked both to the active site and in the dimerization region at the apex, formed relatively stable interactions. Overall, our findings do not obviate the superior potency with respect to inhibition of protease activity of covalently-linked inhibitors such as α-ketoamide 13b in the Mpro active site. Nevertheless, along with those from others, our findings highlight the importance of further characterisation of the Mpro active site and any potential allosteric sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号