首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A nonlinear aeroelastic analysis method for large horizontal wind turbines is described. A vortex wake method and a nonlinear finite element method (FEM) are coupled in the approach. The vortex wake method is used to predict wind turbine aerodynamic loads of a wind turbine, and a three-dimensional (3D) shell model is built for the rotor. Average aerodynamic forces along the azimuth are applied to the structural model, and the nonlinear static aeroelastic behaviors are computed. The wind rotor modes are obtained at the static aeroelastic status by linearizing the coupled equations. The static aeroelastic performance and dynamic aeroelastic responses are calculated for the NH1500 wind turbine. The results show that structural geometrical nonlinearities significantly reduce displacements and vibration amplitudes of the wind turbine blades. Therefore, structural geometrical nonlinearities cannot be neglected both in the static aeroelastic analysis and dynamic aeroelastic analysis.  相似文献   

2.
The computational fluid dynamics (CFD) methods are applied to aerodynamic problems for large scale wind turbines. The progresses including the aerodynamic analyses of wind turbine profiles, numerical flow simulation of wind turbine blades, evaluation of aerodynamic performance, and multi-objective blade optimization are discussed. Based on the CFD methods, significant improvements are obtained to predict two/three dimensional aerodynamic characteristics of wind turbine airfoils and blades, and the vortical structure in their wake flows is accurately captured. Combining with a multi-objective genetic algorithm, a 1.5 MW NH-1500 optimized blade is designed with high efficiency in wind energy conversion.  相似文献   

3.
The magnitude and temporal variations of wind speed considerably influence aerodynamic and structural responses of MW-sized horizontal axis wind turbines. Thus, this paper investigates the variations in airloads and blade behavior of a wind turbine blade resulting from operations in sheared and turbulent flow conditions. First, in order to validate the present methods, comparisons of aerodynamic results were made among the blade element momentum method, free-wake method, and numerical results from the previous studies. Then, the validated methods were applied to a national renewable energy laboratory 5 MW reference wind turbine model for fluid–structure interaction analyses. From the numerical simulations, it can be clearly seen that unfavorable airloads and blade deformations occur due to the sheared and turbulent flow conditions. In addition, it is clear that wake impacts are not as substantial at those of high wind speeds; however, the effects obviously affect the aerodynamic and structural behaviors of the blade at lower wind speeds. Therefore, it is concluded that the numerical results markedly indicate the demand for accurate assessment of wake dynamics for accurate estimations of the aerodynamic and structural responses for sheared and turbulent flow environments.  相似文献   

4.
利用CFD软件对麦克马斯特大学垂直轴风力机进行不同叶尖速比下的数值模拟,计算结果与风洞试验数据吻合良好。近场尾流中,与单叶片的风力机模拟结果比较,上游叶片产生并向下游延伸的旋涡影响下游运行轨道上叶片的升阻力特性,不仅使叶片扭矩输出峰值降低,而且峰值产生的时间延迟。对垂直轴风力机叶片叶梢进行修改,模拟结果显示,叶片扭矩输出峰值不变,但是谷值有所降低,修改后风力机沿风向推力幅值降低明显;远场尾流中,采用风速轮廓线原理,以瑞典的法尔肯贝里市200kW垂直轴风力机为原型,按照真实的空间排布进行数值模拟。模拟结果显示,上游风力机上下两端处产生较为集中的远场尾流,影响下游风力机叶片下半段的气动性能,下游风力机功率输出降低明显。  相似文献   

5.
An experimental study was conducted to characterize the dynamic wind loads and evolution of the unsteady vortex and turbulent flow structures in the near wake of a horizontal axis wind turbine model placed in an atmospheric boundary layer wind tunnel. In addition to measuring dynamic wind loads (i.e., aerodynamic forces and bending moments) acting on the wind turbine model by using a high-sensitive force-moment sensor unit, a high-resolution digital particle image velocimetry (PIV) system was used to achieve flow field measurements to quantify the characteristics of the turbulent vortex flow in the near wake of the wind turbine model. Besides conducting “free-run” PIV measurements to determine the ensemble-averaged statistics of the flow quantities such as mean velocity, Reynolds stress, and turbulence kinetic energy (TKE) distributions in the wake flow, “phase-locked” PIV measurements were also performed to elucidate further details about evolution of the unsteady vortex structures in the wake flow in relation to the position of the rotating turbine blades. The effects of the tip-speed-ratio of the wind turbine model on the dynamic wind loads and wake flow characteristics were quantified in the terms of the variations of the aerodynamic thrust and bending moment coefficients of the wind turbine model, the evolution of the helical tip vortices and the unsteady vortices shedding from the blade roots and turbine nacelle, the deceleration of the incoming airflows after passing the rotation disk of the turbine blades, the TKE and Reynolds stress distributions in the near wake of the wind turbine model. The detailed flow field measurements were correlated with the dynamic wind load measurements to elucidate underlying physics in order to gain further insight into the characteristics of the dynamic wind loads and turbulent vortex flows in the wakes of wind turbines for the optimal design of the wind turbines operating in atmospheric boundary layer winds.  相似文献   

6.
There is a growing interest in extracting more power per turbine by increasing the rotor size in offshore wind turbines. As a result, the turbine blades will become longer and therefore more flexible, and a flexible blade is susceptible to flow-induced instabilities. In order to design and build stable large wind turbine blades, the onset of possible flow-induced instabilities should be considered in the design process. Currently, there is a lack of experimental work on flow-induced instabilities of wind turbine blades. In the present study, a series of experiments were conducted and flow-induced instabilities were observed in wind turbine blades. A small-scale flexible blade based on the NREL 5 MW reference wind turbine blade was built using three-dimensional printing technique. The blade was placed in the test section of a wind tunnel and was subjected to uniform oncoming flow, representing the case of a parked wind turbine blade. The blade׳s tip displacement was measured using a non-contacting displacement measurement device as the oncoming wind speed was increased. At a critical wind speed, the blade became unstable and experienced limit cycle oscillations. The amplitude of these oscillations increased with increasing wind speed. Both supercritical and subcritical dynamic instabilities were observed. The instabilities were observed at different angles of attack and for blades both with and without a geometric twist. It was found that the blade twist had a significant influence on the observed instability: a blade without a twist experienced a strong subcritical instability.  相似文献   

7.
徐顺  赵伟文  万德成 《力学学报》2022,54(4):872-880
随着风能技术的不断进步, 风机叶片逐渐向大型化发展, 这使得真实复杂大气入流对风机运行性能的影响愈发显著. 为研究真实复杂大气入流下海上风机的力学特性响应, 利用基于大涡模拟的域前模拟方法生成复杂大气入流, 并结合致动线模型模拟风机叶片, 对中性复杂大气入流下海上固定式风机进行数值模拟, 重点分析风机的气动性能及转子和叶片根部的力学特性, 并与均匀入流计算工况进行对比. 计算结果表明, 中性复杂大气入流中的大尺度低速气流团使得风机气动功率输出值在较长一段时间处于较低水平, 此外, 中性复杂大气入流的高湍流强度特征使得风机气动功率的变化幅值和标准差较均匀入流工况大幅增加; 风机轴向推力的标准差值增加到均匀入流的53倍, 中性复杂大气入流的来流流场扰动引起偏航力矩的最大值、均方根和标准差分别增加到均匀入流的10、4.4和4.3倍; 速度垂向分布的不均匀性以及轮毂高度附近的大尺度低速羽流结构导致摆振剪力和弯矩的标准差响应值分别为均匀入流的2倍和4.6倍.   相似文献   

8.
风力机通常运行在非定常工况中,其气动性能及尾迹会随着工况的变化而变化. 风剪切是风力机长期所处的环境,它会影响到叶片气动载荷、尾迹形状、总体性能等,分析风剪切作用下的叶片气动性能对风力机的设计有重要意义.本文采用一种时间步进自由涡尾迹(free vortex wake, FVW)方法,耦合FVW方法与风剪切模型,计算不同风剪切因子作用下叶片的气动力系数、推力以及风轮后的尾迹形状变化,研究尾迹形状变化对风轮旋转平面诱导速度及风力机叶片气动性能的影响. 结果表明:在风剪切入流条件下, 随着风剪切因子的增大,风力机的气动力系数随时间做周期性波动的幅度加剧, 推力的平均值逐渐减小,尾迹倾斜程度增大, 尾迹在轮毂下方的倾斜程度更明显;尾迹形状的变化使风轮平面轴向诱导速度因子分布不均匀,同时使风力机的总体性能降低且偏离较大;倾斜尾迹相比于对称尾迹对风轮平面处的诱导影响有明显差别, 波动幅值增大,气动力系数在波谷处的偏差比波峰处大. 尾迹越倾斜,风轮旋转平面处的载荷不对称性越明显.   相似文献   

9.
The study of the dynamic behavior of a wind turbine with horizontal axis can be undertaken by various methods of analysis. The effects of the change of the aerodynamic flow (in the steady and unsteady cases), the variation of parameters of the cinematic movement (angle of attack, pitch angle and yaw angle) and the definition of subsystems characteristics that makes the wind turbine (blade, nacelle and pylon) allow one to characterize the structural dynamic behavior of the wind turbine. It is therefore necessary to develop these items. Once this is done, the structural dynamic behavior of the system can be improved. The term `improve' means the increase of the life duration by mastering the fatigue effects and the reduction of cost without sacrificing the aerodynamic output. The present study aims to examine the behavior of the blade, which is the main part of the wind turbine in that it that transmits forces to all other parts of the structure. The model is based on the theory of three-dimensional beams, under the assumption of variable sections of the type NACA 4415 airfoil, and takes into account membrane, transversal shear, flexion and free torsion effects. With regards to the aerodynamic loads (the lift, the drag and the pitching moment), a validation has been undertaken by considering experimental data and numerical results obtained by a CFD code (Fluent). The forces are obtained by means of a parametric CAD method interpolation of the aerodynamic poles by Bézier patch under geometrical constraints solved by a Simplex type algorithm. The emphasis is put on dynamic aspects by a complete processing of the dynamic equilibrium equation, applied to the wind turbine blade with horizontal axis.  相似文献   

10.
气动力降阶模型是研究叶片气动弹性振动快速高效的新方法。现有气动力降阶模型的研究主要集中在叶片颤振方面,没有涉及更为常见的上游尾流激励的叶片振动问题。本文提出基于Volterra级数的尾流激励叶片气动力降阶模型,为尾流激励下叶片振动和动静叶干涉振动研究提供了新的思路。采用行波法简化尾流的参数个数,用阶跃信号法识别降阶模型的核函数。二维叶片的算例结果表明,本文方法可以较准确地描述尾流激励引起的叶片气动力振荡,而且计算效率极高。  相似文献   

11.
基于Schmitz理论的风叶气动设计研究   总被引:1,自引:0,他引:1  
李连波  陈涛  王凡  刘艳 《应用力学学报》2012,29(2):225-228,245
应用Schmitz理论进行叶片气动设计,考虑了风力机叶片的气动损失,用Schmitz理论推导出风力机叶片的基本设计参数的计算公式,并考虑了风力机在启动和空载时风力机的实际工作点偏离了设计点,对叶片的气动性能参数进行了修正。通过对200kW风力机的算例表明:随着叶片半径的增大,入流角逐渐减小;叶片弦长先增大后减小,修正后得到的风力机在非设计点处的推力、驱动力矩、功率与实际风力机的特性规律相符。  相似文献   

12.
A reduced-order model (ROM) is presented based on Fourier method for flow to predict aerodynamic forces of blades subjected to periodic time-varying upstream wakes. In the method, a time-varying wake is decomposed into harmonic waves by fast Fourier transformation. Using the Fourier method for flow and neglecting the cross-coupling between harmonics, the aerodynamic forces caused by the wake are represented by a linear combination of harmonics with the same frequencies as the wake. The coefficients of the aerodynamic force harmonics are interpolated at the per-fitted curves of the normalized Fourier coefficients (coefficients of aerodynamic forces harmonics corresponding to a unit simple harmonic excitation)–frequency relationship. A blade example is used to show the ability of the proposed method. The results indicate that the ROM method can predict the aerodynamic forces of blades caused by wakes efficiently and accurately. The amplitude levels of wakes have a linear impact on the accuracy of the ROM. Neglecting the higher-order cross-coupling between the harmonics in the ROM method is acceptable.  相似文献   

13.
This article briefly reviews wind turbine aerodynamics, which follows an explanation of the aerodynamic complexity. The aerodynamic models including blade momentum theory, vortex wake model, dynamic stall and rotational effect, and their applications in wind turbine aerodynamic performance prediction are discussed and documented. Recent progress in computational fluid dynamics for wind turbine is addressed. Wind turbine aerodynamic experimental studies are also selectively introduced.  相似文献   

14.
Determination of the aerodynamic configuration of wake is the key to analysis and evaluation of the rotor aerodynamic characteristics of a horizontal-axis wind turbine.According to the aerodynamic configuration, the real magnitude and direction of the onflow velocity at the rotor blade can be determined, and subsequently, the aerodynamic force on the rotor can be determined. The commonly employed wake aerodynamic models are of the cylindrical form instead of the actual expanding one. This is because the influence of the radial component of the induced velocity on the wake configuration is neglected. Therefore, this model should be called a "linear model". Using this model means that the induced velocities at the rotor blades and aerodynamic loads on them would be inexact. An approximately accurate approach is proposed in this paper to determine the so-called "nonlinear" wake aerodynamic configuration by means of the potential theory,where the influence of all three coordinate components of the induced velocity on wake aerodynamic configuration is taken into account to obtain a kind of expanding wake that approximately looks like an actual one. First, the rotor aerodynamic model composed of axial(central), bound, and trailing vortexes is established with the help of the finite aspect wing theory. Then, the Biot-Savart formula for the potential flow theory is used to derive a set of integral equations to evaluate the three components of the induced velocity at any point within the wake. The numerical solution to the integral equations is found,and the loci of all elementary trailing vortex filaments behind the rotor are determined thereafter. Finally, to formulate an actual wind turbine rotor, using the nonlinear wake model, the induced velocity everywhere in the wake, especially that at the rotor blade,is obtained in the case of various tip speed ratios and compared with the wake boundary in a neutral atmospheric boundary layer. Hereby, some useful and referential conclusions are offered for the aerodynamic computation and design of the rotor of the horizontal-axis wind turbine.  相似文献   

15.
This paper reports the development of a vibration monitoring system for wind turbine blades. This system is used to estimate the deflection at the tip blade on a wind turbine tower. Technical accidents of wind turbine blades have become increasingly common. Thus, regular monitoring of the blades is very important to prevent breakdowns, especially in cases when the blades begin to vibrate excessively. The monitoring system developed in this study satisfies two main objectives for practicality. First, our system is easy to install on existing wind turbines. Second, blade deflection is measured in real time. Our system can be operated using a few strain gages attached at the blade root, and the deflection is calculated based on the monitored stress. Thus, direct measurement of deflection at the blade tip is unnecessary. An estimation algorithm for this purpose is adopted based on the experimental modal analysis. This paper focuses on the evaluation of the estimation algorithm to investigate the feasibility of our system. Basic experiments were conducted using a simple blade model of a 300 W scaled wind turbine under rotation. Signals from the strain gages were acquired by a sensor network and sent to a computer through a wireless connection. The results show that the estimation accuracy is acceptably high. Therefore, we conclude that our proposed system is practical.  相似文献   

16.
In real flows unsteady phenomena connected with the circumferential non-uniformity of the main flow and those caused by oscillations of blades are observed only jointly. An understanding of the physics of the mutual interaction between gas flow and oscillating blades and the development of predictive capabilities are essential for improved overall efficiency, durability and reliability. In the study presented, the algorithm proposed involves the coupled solution of 3D unsteady flow through a turbine stage and the dynamics problem for rotor-blade motion by the action of aerodynamic forces, without separating the outer and inner flow fluctuations. The partially integrated method involves the solution of the fluid and structural equations separately, but information is exchanged at each time step, so that solution from one domain is used as a boundary condition for the other domain. 3-D transonic gas flow through the stator and rotor blades in relative motion with periodicity on the whole annulus is described by the unsteady Euler conservation equations, which are integrated using the explicit monotonous finite volume difference scheme of Godunov–Kolgan. The structural analysis uses the modal approach and a 3-D finite element model of a blade. The blade motion is assumed to be constituted as a linear combination of the first natural modes of blade oscillations, with the modal coefficients depending on time. A calculation has been done for the last stage of the steam turbine, under design and off-design regimes. The numerical results for unsteady aerodynamic forces due to stator–rotor interaction are compared with results obtained while taking into account blade oscillations. The mutual influence of both outer flow non-uniformity and blade oscillations has been investigated. It is shown that the amplitude-frequency spectrum of blade oscillations contains the high-frequency harmonics, corresponding to the rotor moving past one stator blade pitch, and low-frequency harmonics caused by blade oscillations and flow non-uniformity downstream from the blade row; moreover, the spectrum involves the harmonics which are not multiples of the rotation frequency.  相似文献   

17.
Two techniques that improve the aerodynamic performance of wind turbine airfoils are described. The airfoil S809, designed specially for wind turbine blades, and the airfoil FX60-100, having a higher lift-drag ratio, are selected to verify the flow control techniques. The flow deflector, fixed at the leading edge, is employed to control the boundary layer separation on the airfoil at a high angle of attack. The multi-island genetic algorithm is used to optimize the parameters of the flow deflector. The results indicate that the flow deflector can suppress the flow separation, delay the stall, and enhance the lift. The characteristics of the blade tip vortex, the wake vortex, and the surface pressure distributions of the blades are analyzed. The vortex diffuser, set up at the blade tip, is employed to control the blade tip vortex. The results show that the vortex diffuser can increase the total pressure coefficient of the core of the vortex, decrease the strength of the blade tip vortex, lower the noise, and improve the efficiency of the blade.  相似文献   

18.
基于仿生设计的风力发电机叶片力学性能的实验研究   总被引:3,自引:0,他引:3  
根据风力机的基本理论和相似理论设计了一个翼型为SG6050,半径为1m的小型风力机叶片。运用结构仿生学原理,对所设计的风力机叶片进行了仿生物中轴铺层设计。通过模态实验与应变实验,比较了传统设计与仿生设计两种不同风力机叶片的力学性能。模态实验结果表明,基于仿生设计的叶片的前六阶固有频率比传统叶片的前六阶固有频率减少约8%;两种叶片的固有频率均满足设计要求;仿生设计的叶片几乎不会改变叶片的动态特性。而应变实验表明,仿生设计的叶片在各种工况下的应变均大于传统的叶片约10%~20%。新设计的叶片具有较好的柔性,有效减小了叶片的应力,提高了叶片的疲劳寿命。  相似文献   

19.
Lagwise dynamic characteristics of a wind turbine blade subjected to unsteady aero- dynamic loads are studied in this paper. The partial differential equations governing the coupled longitudinal-transverse vibration of the blade with large bending deflection are obtained by ap- plying Hamilton's principle. The modal problem of the coupled vibration is handled by using the method of numerical integration of Green's function. Influences of the rotating speed, the pitch angle, the setting angle, and the aerodynamic loads on natural frequencies are discussed. Results show that: (I) Lagwise natural frequencies ascend with the increase of rotating speed; effects of the rotating speed on low-frequencies are dramatic while these effects on high-frequencies become less. (2) Influences of the pitch angle on natural frequencies are little; in the range of the normal rotating speed, the first frequency ascends with the increase of the absolute value of the pitch angle, while it is contrary to the second and third frequencies. (3) Effects of the setting angle on natural frequencies depend on the rotating speed; influences are not significant at low speed, while they are dramatic on the first frequency at high speed. (4) Effects of the aerodynamic loads on natural frequencies are very little; frequencies derived from the model considering aerodynamic loads are smaller than those from the model neglecting aerodynamic loads; relative errors of the results corresponding to two models ascend with the increase of the absolute value of the setting angle.  相似文献   

20.
风力机气动力学一直是国内外研究的热点课题之一.目前相关研究大都是基于确定性工况条件, 但因风力机常年工作在自然来流复杂环境,风速随机波动致使风电系统呈现不确定性, 对电网稳定性带来巨大挑战,因此进行不确定风速条件下风力机气动力学研究具有重要意义.为揭示不确定性对风力机流场影响机理并明确其对气动力的影响程度,本文提出一种风力机不确定空气动力学分析方法,基于修正叶素动量理论和非嵌入式概率配置点法,建立水平轴风力机不确定性空气动力学响应模型; 以NREL Phase VI S809风力机叶轮为研究对象, 基于该模型提取风力机输出随机响应信息,量化不确定风速对风力机风轮功率、推力、叶片挥舞弯矩和摆振弯矩的影响程度;通过分析流动诱导因子不确定性在叶片展长方向上的分布规律,揭示不确定因素在风力机本体上的传播机制,为风电系统设计及应用提供理论依据和重要参考. 结果表明,风速波动对风力机功率和气动力影响显著,高斯风速标准差由0.05倍增大至0.15倍均值,功率和推力最大波动幅度分别由13.44%和8.00%增大至35.11%和22.02%,叶片挥舞弯矩和摆振弯矩最大波动幅度分别由7.20%和12.84%增大至19.90%和33.49%.来流风速不确定性导致叶片根部位置气流明显波动,可以考虑在该部分采取流动控制措施降低叶片对风速不确定性的敏感程度.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号