首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
全光逻辑门是全光计算以及全光信号处理系统中关键的光子器件.随着互补金属氧化物半导体(COMS)工艺的发展,基于半导体材料微纳波导全光逻辑门已经成为集成光学领域中的重要方向;尤其是硅基光子集成器件在近些年成为了国际研究热点.文章主要对基于绝缘体上的硅(SOD)和Ⅲ-Ⅴ族化合物材料不同波导结构(马赫-曾德尔干涉仪(Mach-Zehnder interferometer)微环谐振腔和条形波导结构)的全光逻辑门的研究进展进行了介绍,并且在器件的工作速率和功耗方面,分别对上述基于SOI和Ⅲ-Ⅴ族化合物材料三种不同波导结构的全光逻辑门进行了分析和比较.  相似文献   

2.
All-optical logic gates, including OR, XOR, NOT, XNOR, and NAND gates, are realized theoretically in a two-dimensional silicon photonic crystal using the light beam interference effect. The ingenious photonic crystal waveguide component design, the precisely controlled optical path difference, and the elaborate device configuration ensure the simultaneous realization of five types of logic gate with low-power and a contrast ratio between the logic states of “1” and “0” as high as 20 dB. High power is not necessary for operation of these logic gate devices. This offers a simple and effective approach for the realization of integrated all-optical logic devices.  相似文献   

3.
Commercial computers based on electronic logic devices have brought great changes to the world. However, traditional electronic devices are suffering from numerous technical challenges in their attempts to continue to satisfy Moore's law. Alloptical logic devices, as promising successors to their electronic counterparts, have become a major focus of optics research. In this paper, we provide a review of current all-optical logic devices. The logic gates in these devices, which are described in the first part of the review, are divided into five categories based on the different principles used in their realization. Complex optical devices with various functions and reconfigurable devices are summarized in the next section. In the final part of this paper, we discuss some of the previous works on all-optical integrated chips with specific functions. This review will provide a complete technological roadmap for all-optical devices and aims to be helpful in possible future developments in this growing field.  相似文献   

4.
Various proposed optical computing devices involve nonlinear optical operation and use semiconductor optical amplifier (SOA)-based switches as fundamental elements for logic operations. Due to the nonlinear operation, these devices suffer from high power that causes problems in very large-scale optical integration. In this paper, a method is proposed to implement arithmetic operations using a photonic crystal (PhC) cell and eliminate the SOA-based switches altogether. The proposed method is employed on designing an all-optical full adder/subtractor circuit that requires only beam combiners and photonic crystal NOT gates.  相似文献   

5.
A. Kotb  S. Ma  N.K. Dutta 《Optics Communications》2011,284(24):5798-5803
The performances of all-optical logic gates XOR, AND, OR, NOR and NAND based on semiconductor optical amplifier (SOA) have been simulated including the effects of amplified spontaneous emission (ASE). For the parameters used, all-optical logic gates using SOA are capable of operating at speed of 80 Gb/s.  相似文献   

6.
提出了一种新型的基于非线性光纤环镜(NOLM)的可重构全光逻辑门实现方案。传统的基于NOLM的全光逻辑利用自相位调制效应或交叉相位调制效应,透射传输函数重构的自由度低,可实现的逻辑门种类较少。该方案在传统的结构基础上,分析了NOLM中探测光的偏振态的演化,以及输入光偏振态和环内偏振控制器对NOLM的传输特性的影响。理论分析和数值仿真结果表明在考虑NOLM中的非线性偏振旋转效应的情况下,可以更加自由地构建不同透射传输函数,从而利用单一NOLM结构,仅通过调节偏振控制器,即能够可重构地实现绝大部分基础组合逻辑。实验中,完成了两路40Gb/s的数据信号之间的"非"、"与"、"或"、"或非"、"同或"、"异或"等各种基础组合逻辑,验证了方案的可行性。  相似文献   

7.
We present a study of the spatial propagation of light in a third order planar step-index waveguide with a transverse parabolic width film. By using the Lagrangian formalism, the width and phase evolution of a Gaussian beam has been completely described showing both the refractive contributions of the lens-like waveguiding geometry and self-focusing nonlinearity. As a result of this study, we have proposed the design of a new kind of integrated all-optical devices which, by means of the spatial beam power modulation and its influence on the transverse modal coupling can operate as phase-insensitive AND, OR and XOR logic gates.  相似文献   

8.
We numerically show that quasi-phase matched (QPM) lithium niobate (LN) devices employing the cascaded second-order nonlinear effect of second harmonic generation (SHG) and difference frequency mixing (DFM) have all-optical decision gate characteristics. The decision gate function is realized by a parabolic transmittance for a low-power region and a limiting characteristic for a high-power region. The limiter function is attributed to the large group-velocity mismatch between the fundamental and second harmonic pulses. This operation principle differs from those of other all-optical 2R (reamplification and reshaping) or 3R (2R and retiming) regenerators that have been proposed in the past. Furthermore, we show that an initial time offset between the signal and clock pulses can improve the output signal power or the switching efficiency of the device. Based on the numerical results, we propose a method for designing all-optical 3R regenerators using the cascade of SHG and DFM in the QPM-LN devices. Following the design method, all-optical 3R operation at the bit rate of 200 Gbps can be achieved using a 1-cm-long waveguide device.  相似文献   

9.
Efficient three-wave mixing devices have numerous applications, including wavelength conversion, dispersion compensation, and all-optical switching. Second-harmonic generation (SHG) is a useful diagnostic for near-degenerate operation of these devices. With buried waveguides formed in periodically poled lithium niobate by annealed and reverse proton exchange, we demonstrate what is believed to be the highest normalized conversion efficiency (150%/W cm(2)) for SHG in the 1550-nm communications band reported to date.  相似文献   

10.
We propose a novel ultra-compact all-optical XOR and AND logic gates without using nonlinear optics. In order to realize these devices, we adopt photonic crystal waveguides (PCWs) based on multi-mode interference devices. Numerical results show that the operating bandwidth of the ON to OFF logic-level contrast ratio of not less than 6.79 dB is 35 nm for XOR logic gate and 9 nm for AND logic gate. Proposed logic gates have the potential to be key components for an optical packet switching system due to their small feature sizes and low power consumption.  相似文献   

11.
We describe the engineering of the electromagnetic vacuum in a 2D–3D photonic bandgap (PBG) hetero-structure. This facilitates the development of novel active devices and the observation of novel quantum electrodynamic phenomena. We consider a specific architecture suitable as an all-optical micro-transistor capable of novel ultra-fast response with low switching power requirements. This relies on a unique collective atomic switching and population inversion achieved by coherent resonant pumping in a suitably engineered vacuum. Specific waveguide architectures within the 3D PBG micro-chip provide local density-of-states (LDOS) peaks near their cutoff frequency. These provide “building blocks” for electromagnetic vacuum engineering without recourse to conventional high Q-factor micro-cavities. For the all-optical micro-transistor, a fork shape LDOS within the micro-chip is desirable, using trimodal waveguide architecture. We delineate the functional robustness of these architectures to disorder caused by manufacturing errors within the PBG micro-chip.  相似文献   

12.
Different all-optical logic operations, memory blocks etc. are developed using the inherent parallelism of optics. In any digital communication and computation system, the role of serial to parallel and parallel to serial data conversion are very much essential for making a data convenient for transition.Here in this paper, the authors propose a new scheme for developing an all-optical parallel to serial data conversion system by using optical J-K Flip-Flops and some logic gates based on optical non-linear switches. The uses of such switches are widely established in the area of optical parallel computation.This process can be extend for developing some all-optical digital devices like shift register, optical pulse counters etc. The proposed scheme deals with the best use of high parallelism of the optics, so the super-fast processing speed can be achieved.  相似文献   

13.
提出了一种新型的基于半导体光纤环形腔激光器(SFRL)中同时发生的四波混频效应和交叉增益调制效应同时实现全光AND门和NOR门方案,并建立了这种全光逻辑门完整的宽带理论模型.通过数值模拟的方法,研究了输入信号光峰值功率及SFRL中两个耦合器的耦合比对这种全光逻辑门输出特性的影响. 关键词: 半导体光纤环形腔激光器 全光逻辑门 四波混频 交叉增益调制  相似文献   

14.
We show that a monolithic and compact vertical cavity laser with intracavity saturable absorber can emit short excitable pulses. These calibrated optical pulses can be excited as a response to an input perturbation whose amplitude is above a certain threshold. Subnanosecond excitable response is promising for applications to novel all-optical devices for information processing or logical gates.  相似文献   

15.
《Physics letters. A》2020,384(22):126432
The design and simulation of all-optical and self-integrated primary logical AND, OR, XOR and NOT gates based on phase sensitivity of spatial optical solitons have been reported. By tuning the phase of incident solitons into a bulky nonlinear Kerr medium and interaction between the phase tuned solitons, the self-integrated logical gates are achieved simultaneously in a 50 μm long distance by one setup. These are the advantages in the application and design of integrated circuits. In addition, the proposed logical gates can be cascaded and the logical AND and XOR gates can simultaneously have two outputs. The simplicity of constructing, simultaneous functions with one setup, the possibility of integrating, high sensitivity and fabrication ease are the advantages of the proposed logical gates and may be a good candidate for the future of integrated photonic computational circuits.  相似文献   

16.
光致异构全光逻辑门理论与实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
李燕明  陈理想  佘卫龙 《物理学报》2007,56(10):5895-5902
基于双光抽运探测模型,利用偶氮苯聚合物光致异构和光致双折射效应,建立了全光逻辑门的理论分析模型,提出了一种新颖的全光逻辑门设计方案.该方案基于输入抽运光和信号光的强度或偏振态,设计了“与”门、“或”门、“异或”门和“异或非”门等基本功能的全光逻辑门.以掺杂分散红1(DR1)的聚甲基丙烯酸甲酯(PMMA)薄膜为样品进行实验,得到了比较好的逻辑门运算实验结果,与理论分析相符合.  相似文献   

17.
实验研究了掺锡As2S8条波导的光阻断效应,提出一种新型的基于掺锡As2S8波导的全光逻辑门方案,并试制了掺锡As2S8条波导全光逻辑门,实验结果显示该逻辑门具有良好的波形特性,表明该材料适合做全光逻辑门,具有一定的应用潜力.  相似文献   

18.
In conduction of parallel logic, arithmetic and algebraic operations, optics has already proved its successful role. Since last few decades a number of established methods on optical data processing were proposed and to implement such processors different data encoding/decoding techniques have also been reported. Currently frequency encoding technique is found be a promising as well as a faithful mechanism for the conversion of all-optical processing as the frequency of light remains unaltered after refection, refraction, absorption, etc. during the transmission of light. There are already proposed some frequency encoded optical logic gates. In this communication the authors propose a new and different concept of frequency encoded optical logic gates and optical flip-flop using the non-linear function of semiconductor optical amplifier.  相似文献   

19.
In this paper, we have studied the characteristics of second-order nonlinear interactions with band-overlapped type-I quasi-phase-matching (QPM) second harmonic generation (SHG) and sum-frequency generation (SFG), and predicted a blue-shift with a band-narrowing of their bands and a sunken response in the SFG curve, which are due to the phase-matching-dependent competition between band-overlapped SHG and SFG processes. This prediction is then verified by the experiment in an 18-mm-long bulk MgO-doped periodically poled lithium niobate crystal (MgO:PPLN) and may provide the candidate solution to output controlling for flexible broadcast wavelength conversion, channel-selective wavelength conversion and all-optical logic gates by cascaded QPM second-order nonlinear processes.  相似文献   

20.
Jitendra Nath Roy 《Optik》2009,120(7):318-324
Interferometric devices for optical processing have been of great interest in recent years. Semiconductor optical amplifier (SOA)-based Mach-Zehnder interferometer (MZI) has already taken a significant role in the field of ultra-fast all-optical signal processing. Optical tree architecture (OTA) provides important contributions in optical interconnecting networks. In this communication, we have tried to exploit the advantages of both OTA and SOA-based MZI switches. We have proposed SOA-MZI-based tree architecture, a new and alternative scheme, for integrated all-optical logic and arithmetic operations. This architecture can enable one to perform all-optical processing of signals, including two input logic operations, half-adder, full-adder, full-subtractor, one-bit data comparator, etc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号