首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Optics has already been established as a potential candidate for conduction of digital logic and arithmetic operation in communication and computation processes. Different proposals have been reported by different scientists to make optics meaningful signal for conduction of the above operations. As it is well known that the memory device is a basic building block of any computation and communication system hence developing systems such as digital memory, multivibrator, etc. are the obvious requirements for optical communication as well as computation systems also. As the role of switching devices is an essential part of any processing system, many proposals were seen where all-optical switches using the combination of linear and non-linear materials were used, to implement the logic elements.In this context, the authors propose a new scheme for implementation of an all-optical mono-stable multivibrator using the non-linear material based switches and high refractive index based material. This multivibrator can generate a time pulse of definite width.  相似文献   

2.
To exploit the parallelism of optics in data processing,a suitable number system and an efficient encoding/decoding scheme for handling the data are very essential.In the field of optical computing and parallel information processing,several number systems like binary,quaternary,octal,hexadecimal,etc.have been used for different arithmetic and algebraic operations.Here,we have proposed an all-optical conversion scheme from its binary to its other 2n radix based form with the help of terahertz optical asymmetric demultiplexer (TOAD) based tree-net architecture.  相似文献   

3.
To achieve the inherent parallelism in optics a suitable number system and efficient encoding/decoding scheme for handling the data are very much essential. Binary number is accepted as the best representing number system in almost all types of existing electronic computers. But, binary number (0 and 1) is insufficient in respect to the demand of the coming generation. Multi-valued logic (with radix >2) can be viewed as an alternative approach to solve many problems in transmission, storage and processing of large amount of information in digital signal processing. Here, in this paper all-optical scheme for the conversion of binary to quaternary number and vice versa have been proposed and described. Simulation has also been done. In this all-optical scheme the numbers are represented by different discrete polarized state of light.  相似文献   

4.
The need for increasingly high-speed digital optical systems and optical processors demands ultra-fast all-optical logic and arithmetic units. In this paper, we combine the attractive and powerful parallelism property of the modified signed-digit (MSD) number representation with the ultra-fast all-optical switching property of the semiconductor optical amplifier and Mach-Zehnder interferometer (SOA-MZI) to design and implement all-optical MSD adder/subtracter circuits. Non-minimized and minimized techniques are presented to design and realize efficient circuits to perform arithmetic operations. Several all-optical circuits’ designs are proposed with the objective to minimize the number of the SOA-MZI switches, the time delay units in the adders, and other optical elements. To use the switching property of the SOA-MZI structure, two bits per digit binary encoding for each of the trinary MSD digits are used. The proposed optical circuits will be very helpful in developing hardware modules for optical digital computing processors.  相似文献   

5.
In data and image processing the role of optics is already well established. Due to inherent parallelism the optical systems run faster than its electronic counterparts. Optical nonlinear material can be used as a successful optical switch. The primary requirement for proper functioning of such nonlinear material based logic devices is a fixed intensity level of the optical signal against a specific logic state. In this communication, the authors propose a new concept to obtain a fixed intensity level of optical signal against a specific logic state for data processing. The scheme may extend a tremendous application not only to the area of all-optical computation, but also to optical communication process.  相似文献   

6.
In conduction of parallel logic, arithmetic and algebraic operations, optics has already proved its successful role. Since last few decades a number of established methods on optical data processing were proposed and to implement such processors different data encoding/decoding techniques have also been reported. Currently frequency encoding technique is found be a promising as well as a faithful mechanism for the conversion of all-optical processing as the frequency of light remains unaltered after refection, refraction, absorption, etc. during the transmission of light. There are already proposed some frequency encoded optical logic gates. In this communication the authors propose a new and different concept of frequency encoded optical logic gates and optical flip-flop using the non-linear function of semiconductor optical amplifier.  相似文献   

7.
Due to highly noise-reduced signal nature the squeezed state of light has drawn an enormous attention of present day scientific community specially in the area of information processing and digital communication. On the other side optics has been established as a powerful candidate to be used in information processing due to its high parallelism and real time speed of operation. Here in this paper the authors propose a new concept of developing all-optical XOR logic gate (which is a fundamental and essential one in digital communication and computation) using squeezed state formation of light.  相似文献   

8.
A scheme for a high-speed wavelength encoded all-optical S–R flip-flop (or a digital memory cell for storing of optical bits) based on wavelength conversion (MZI) in semiconductor optical amplifier (SOA) and phase conjugation system (PCS) is proposed. The switching action of semiconductor optical amplifier (SOA) does not give too high operational speed because of electrical pumping power. But optical phase conjugation mechanism gives us ultrahigh operational speed. So, joint use of them gives rise to a more high speed system comparatively to only SOA based switches. Here two logic states of the whole system is encoded by two wavelengths as well as frequencies, since the information in the bit is unaffected throughout the communication not having regard to the loss of light energy due to reflection, refraction polarization, etc.  相似文献   

9.
Multiplexer and De-multiplexer operation play a very important role in all-optical computation, communication and control. Considerable number of multiplexing – de-multiplexing scheme in digital optical processing have already been reported. A design of all-optical ternary Multiplexer De-multiplexer circuit with optical nonlinear material (OPNLM) based switch is proposed and described in this paper. Different logic states have been represented by different polarization states of light. Logical simulation is also included here. This circuit will be useful in future all-optical multi-valued logic based computing and information processing system.  相似文献   

10.
Jitendra Nath Roy 《Optik》2009,120(7):318-324
Interferometric devices for optical processing have been of great interest in recent years. Semiconductor optical amplifier (SOA)-based Mach-Zehnder interferometer (MZI) has already taken a significant role in the field of ultra-fast all-optical signal processing. Optical tree architecture (OTA) provides important contributions in optical interconnecting networks. In this communication, we have tried to exploit the advantages of both OTA and SOA-based MZI switches. We have proposed SOA-MZI-based tree architecture, a new and alternative scheme, for integrated all-optical logic and arithmetic operations. This architecture can enable one to perform all-optical processing of signals, including two input logic operations, half-adder, full-adder, full-subtractor, one-bit data comparator, etc.  相似文献   

11.
Optics is a potential candidate in information, data, and image processing. In all-optical data and information processing, optics has been used as information carrying signal because of its inherent advantages of parallelism. Several optical methods are proposed in support of the above processing. In many algebraic,arithmetic, and image processing schemes fundamental logic and memory operations are conducted exploring all-optical devices. In this communication we report an all-optical matrix multiplication operation with non-linear material based switching circuit.  相似文献   

12.
The inherent parallelism of optical signal is an advantageous feature for high-speed computations and other digital logic operations. Different techniques have been proposed for performing arithmetic, algebraic and logic operations using light as the information-carrier. Here we propose a new method for Serial Data Transfer between Registers using optical non-linear material. This system is all-optical in nature. Optical NAND gate and NOT gate are the basic building blocks of this system.  相似文献   

13.
Optics is a highly potential candidate in super fast data computation and communication because of its strong inherent parallelism. Several all optical logic, arithmetic and data processing systems have been proposed in the last few decades. Many all optical digital encoders and decoders are also reported. In this paper we propose a new and alternative concept of using optics for encrypting a binary number to a suitable binary code to achieve a secured optical communication. This binary number can bear the supporting alphabets and numerals in communication of data. In this process an encrypted data is checked by necessary parity bit to ensure a secure communication. The result is verified using proper simulation.  相似文献   

14.
张印  董建绩  雷蕾  张新亮 《中国物理 B》2012,21(2):24209-024209
All-optical digital logic elementary circuits are the building blocks of many important computational operations in future high-speed all-optical networks and computing systems. Multifunctional and reconfigurable logic units are essential in this respect. Employing the demodulation properties of delay interferometers for input differential phase shift keying signals and the gain saturation effect in two parallel semiconductor optical amplifiers, a novel design of 40 Gbit/s reconfigurable all-optical dual-directional half-subtractor is proposed and demonstrated. All output logic results show that the scheme achieves over 11=dB extinction ratio, clear and wide open eye diagram, as well as low polarization dependence (< 1 dB), without using any additional input light beam. The scheme may provide a promising candidate for future ultrafast all-optical signal processing applications.  相似文献   

15.
Optics has already proved its strong potentiality for the conduction of parallel logic, arithmetic and algebraic operations. In the last few decades several all-optical data processors were proposed. To implement these processors different data encoding/decoding techniques have been reported. In this context, polarization encoding technique, intensitybased encoding technique, tristate and quaternary logic operation, multivalued logic operations, symbolic substitution techniques etc. may be mentioned. Very recently, frequency encoding/decoding technique has drawn interest from the scientific community. Frequency is the fundamental character of any signal; and it remains unaltered in reflection, refraction, absorption etc. during the propagation and transmission of the signal. This is the most important advantage of frequency encoding technique over the conventional encoding techniques. In this communication the authors propose a new scheme for implementing NOT, OR and NOR logic operations. For this purpose co-propagating beams having different frequencies in C-band (1535–1560 nm) have been used for generating cascaded sum and difference frequency, exploiting the nonlinear response character of periodically poled LiNbO3 waveguide. The cross-gain modulation property of the semiconductor optical amplifier (SOA) and the wavelength conversion property of the reflecting semiconductor optical amplifiers (RSOA) are exploited here to implement the desired optical logic and arithmetic operations.  相似文献   

16.
Sisir Kumar Garai 《Optik》2010,121(16):1462-3807
Optics has already proved its strong potential in information and data processing because of its inherent parallelism. Several all-optical data processors were proposed since the last few decades. Again it is also known that tristate operations can be well accommodated with optics in data and information processing, as this type of operation can enhance the information quality and capacity. Very recently, the concept of frequency variant encoding /decoding technique has been established because of its basic advantages. The potential advantage of frequency-dependent encoding/decoding is that, as the frequency is the fundamental character of a signal, it will remain unaltered in reflection, refraction, absorption, etc. during transmission. In this communication, the authors therefore propose a method of implementing frequency-encoded inversion logic operations with tristate logic using reflecting semiconductor optical amplifiers (RSOA).  相似文献   

17.
Jianqi Zhang  Huan Xu 《Pramana》2009,72(3):547-554
A new scheme of binary half adder and full adder is proposed. It realizes a kind of all-optical computation which is based on the polarization coding technique and the nonlinear total reflectional optical switches.   相似文献   

18.
A novel all-optical quantization and coding scheme for ultrafast analog-to-digital (A/D) conversion exploiting polarization switches (PSWs) based on nonlinear polarization rotation (NPR) in semiconductor optical amplifiers (SOAs) is proposed. In addition, a theoretical model for the polarization switch based on NPR is presented. Through cascading two PSWs, a 2-period transfer function for 3-bit long all-optical quantization and coding is realized numerically for the first time to the authors’ knowledge. The effective number of bits (ENOB), the limitation of bandwidth and conversion speed and the scalability are also investigated. The proposed all-optical quantization and coding scheme, combined with existing all-optical sampling techniques, will enable ultrafast A/D conversion at operating speed of hundreds of Gs/s with at least 3 bit resolution, and allows low optical power requirements, photonic integration, and easy scalability.  相似文献   

19.
Parimal Ghosh  Sisir Kumar Garai 《Optik》2011,122(17):1544-1551
Data comparator is the integral part of arithmetic and logical unit of any electronic or optical data processor. Due to some inherent limitations of electronics it cannot be possible to obtain a super fast operation (over terahertz limit) from electronic comparators. Again wavelength encoding technique has been established as an excellent one over other existing optical data encoding techniques. Semiconductor optical amplifier (SOA) technologies have shown their strong potentiality of realizing many all-optical systems. In this communication the authors have proposed a new scheme of developing all-optical wavelength encoded n bit binary comparator exploiting the four-wave mixing, wavelength filtering, wavelength conversion and nonlinear polarization rotation capabilities property of nonlinear semiconductor optical amplifiers. The scheme can be used for comparing signed and unsigned optical binary data of any bit wide numbers as well. The comparator is especially suitable for use as a building block in a larger optical circuit, such as in an all optical telecommunications switch.  相似文献   

20.
Since last few decades optics has already proved its strong potentiality for conducting parallel logic, arithmetic and algebraic operations due to its super-fast speed in communication and computation. So many different logical and sequential operations using all optical frequency encoding technique have been proposed by several authors. Here, we have keened out all optical dibit representation technique, which has the advantages of high speed operation as well as reducing the bit error problem. Exploiting this phenomenon, we have proposed all optical frequency encoded dibit based XOR and XNOR logic gates using the optical switches like add/drop multiplexer (ADM) and reflected semiconductor optical amplifier (RSOA). Also the operations of these gates have been verified through proper simulation using MATLAB (R2008a).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号