首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Complex coacervation of gelatin A and sodium alginate was carried out to obtain the maximum coacervate yield. Turbidity and coacervate yield (%) measurements were carried out to support the ratio of the two polymers and pH that produced maximum coacervation. The optimum ratio between gelatin A-sodium alginate and pH to form the maximum coacervate complex was found to be 3.5:1 and 3.5–3.8, respectively. Olive oil microencapsulation was carried out at the optimized ratio and pH. Microcapsules were crosslinked by using glutaraldehyde. Scanning electron microscopy studies confirmed the formation of free flowing spherical microcapsules of different sizes. The size of microcapsules increased with the increase in the concentration of the polymer. The encapsulation efficiency and the release rates of olive oil were dependent on the amount of crosslinker, oil loading and polymer concentration. Thermogravimetric study revealed improvement of thermal stability with crosslinking. Fourier Transform Infrared Spectroscopy study showed that there was no significant interaction between olive oil and gelatin-alginate complex.  相似文献   

2.
Surfactant-stabilized emulsion droplets were used as templates for the synthesis of hollow colloidal particles. Monodisperse silicone oil droplets were prepared by hydrolysis and polymerization of dimethyldiethoxysiloxane monomer, in the presence of surfactant: sodium dodecyl sulphate (SDS, anionic) or Triton X-100 (non-ionic). A sharp decrease in the average droplet radius with increasing surfactant concentration was found, with a linear dependence of the droplet radius on the logarithm of the surfactant concentration. The surfactant-stabilized oil droplets were then encapsulated with a solid shell using tetraethoxysilane, and hollow particles were obtained by exchange of the liquid core. The size and polydispersity of the oil droplets and the thickness of the shell were determined using static light scattering, and hollow particles were characterized by electron microscopy. Details on the composition of the shell material were obtained from energy-dispersive X-ray analysis. In the case of sodium dodecyl sulphate, the resulting shells were relatively thin and rough, while when Triton X-100 was used, smooth shells were obtained which could be varied in thickness from very thick ( approximately 150 nm) to very thin shells ( approximately 17 nm). Finally, hexane droplets were encapsulated using the same procedure, showing that our method can in principle be extended to a wide range of emulsions.  相似文献   

3.
Monodisperse polymelamine microcapsules were prepared by phase separation method. Control of microcapsule diameter was investigated using the uniform-sized oil-in-water emulsion droplets as the capsule core. The monodisperse emulsion droplets were prepared using the Shirasu porous glass (SPG) membrane emulsification technique. The effects of the diameter of the oil droplet and concentration of sodium dodecyl sulfate (SDS), which is a typical emulsifier in SPG membrane emulsification, on microencapsulation were investigated. The microcapsules were aggregated when oil droplets with small size were microencapsulated at high SDS concentration. To reduce the SDS concentration, the creamed emulsion was used. The monodisperse polymelamine microcapsules were successfully prepared by using the creamed emulsion. The microcapsule diameter was almost similar to the diameter of the encapsulated oil droplet. The coefficient of variation values was about 10% for all microcapsules prepared in this study. Control of microcapsule diameter was achieved in the range of 5–60 μm.  相似文献   

4.
Complex coacervation is an associative liquid/liquid phase separation resulting in the formation of two liquid phases: a polymer-rich coacervate phase and a dilute continuous solvent phase. In the presence of a third liquid phase in the form of disperse oil droplets, the coacervate phase tends to wet the oil/water interface. This affinity has long been known and used for the formation of core/shell capsules. However, while encapsulation by simple or complex coacervation has been used empirically for decades, there is a lack of a thorough understanding of the three-phase wetting phenomena that control the formation of encapsulated, compound droplets and the role of the viscoelasticity of the biopolymers involved. In this contribution, we review and discuss the interplay of wetting phenomena and fluid viscoelasticity in coacervate/oil/water systems from the perspective of colloid chemistry and fluid dynamics, focusing on aspects of rheology, interfacial tension measurements at the coacervate/solvent interface, and on the formation and fragmentation of three-phase compound drops.  相似文献   

5.
Microcapsules were prepared by microsieve membrane cross flow emulsification of Eudragit FS 30D/dichloromethane/edible oil mixtures in water, and subsequent phase separation induced by extraction of the dichloromethane through an aqueous phase. For long-chain triglycerides and jojoba oil, core-shell particles were obtained with the oil as core, surrounded by a shell of Eudragit. Medium chain triglyceride (MCT oil) was encapsulated as relatively small droplets in the Eudragit matrix. The morphology of the formed capsules was investigated with optical and SEM microscopy. Extraction of the oil from the core-shell capsules with hexane resulted in hollow Eudragit capsules with porous shells. It was shown that the differences are related to the compatibility of the oils with the shell-forming Eudragit. An oil with poor compatibility yields microcapsules with a dense Eudragit shell on a single oil droplet as the core; oils having better compatibility yield porous Eudragit spheres with several oil droplets trapped inside.  相似文献   

6.
Microcapsules with oil cores and solid polymer shells have been prepared by precipitation of the polymer from the internal phase of an oil-in-water emulsion. The dispersed phase consists of a polymer, a good solvent for the polymer (dichloromethane), and a poor solvent for the polymer (hexadecane). Removal of the good solvent results in phase separation of the polymer within the emulsion droplet, leading to the formation of a polymeric shell surrounding the poor solvent. A UV-active organic molecule is added to the oil phase prior to emulsification. Provided this molecule has some water solubility, the release profile of the molecule from the capsule can be determined. While the microcapsule size was kept approximately constant, the influence of a wide range of factors on the release profile has been studied. These include the type and molecular weight of the shell-forming polymer, the molecular weight of the active ingredient molecule, the shell thickness, the use of copolymers or polymer blends to form the shell, the effect of cross-linking the shell or heating the capsule to temperatures above the T(g) value of the polymer after the shell has been formed, and the effect of changes in the pH of the release solution in the case when a weak polyelectrolyte is used as the shell polymer. The differences in behavior are discussed in terms of the properties of the polymer shell, in particular the thickness, the polymer/release molecule interaction, and the free volume/porosity. Variation of these parameters allows one to control both the final release yield and the rate of release for time periods between a few hours and days.  相似文献   

7.
The effect of long-chain alcohols (C(n)OH for n=8, 10, 12, 14, 16, 18) on the partitioning of sodium dodecyl sulfate (SDS) to the oil/water interface in oil-in-water macroemulsions was investigated and related to emulsion droplet size and total interfacial area (TIA) contributed by SDS. Alcohols were solubilized in hexadecane and emulsified in SDS solutions. Ultrafiltration was carried out in centrifuge tubes having nanoporous filters with a 30,000 molecular weight cutoff (MWCO), so that emulsion droplets would not pass through, and only SDS that is in the bulk water phase as monomers or micelles (i.e., not at the interface) could pass through. The results showed a chain-length compatibility effect; the maximum amount of SDS partitioned to the interface when dodecanol (C(12)OH) was added to the oil. The results also showed that partitioning of SDS is affected only when dodecanol is added. All other alcohols had no significant influence on SDS partitioning to the oil/water interface. Droplet size measurements revealed a minimum in droplet size for emulsions with added C(12)OH. In order to explain the results, it was proposed that the penetration of alcohol molecules into the interfacial film occur at the interface, resulting in more cohesive molecular packing at the interface, and the minimum droplet size and maximum partitioning of SDS at the oil/water interface for C(12)OH/SDS emulsion system. The TIA provided by the SDS molecules, as determined from our ultrafiltration method, was two orders of magnitude greater than that calculated from the droplet size measured by light scattering. Possible explanations for this disparity are discussed.  相似文献   

8.
We present a methodology to quantitatively determine the fraction of sodium dodecyl sulfate (SDS) that partitions to the oil/water interface in oil-in-water macroemulsions and calculate the total interfacial area (TIA) through the novel use of filtration through nanoporous membranes. Ultrafiltration was carried out in centrifuge tubes having nanoporous filters with a 30,000 molecular weight cutoff (MWCO), so that emulsion droplets would not pass through, and only SDS (as monomers and micelles) that is in the bulk water phase (i.e., not at the interface) could pass through. The concentration of SDS in the filtrate was determined and used to calculate the TIA for each system. The mean droplet diameter of the emulsions was measured by light scattering. We analyzed the effects of total SDS concentration and oil chain length on the amount of SDS that partitions to the interface, the TIA, and the droplet diameter. The results showed that partitioning of SDS to the oil/water interface increases with increasing total SDS concentration in emulsion systems (i.e., the more SDS we add to the bulk solution, the more SDS partitions to the oil/water interface). However, the surface-to-bulk partition coefficient (i.e., the SDS concentration at the interface divided by the SDS concentration in the aqueous phase) remains the same over the entire concentration range (8-200 mM). The results showed a chain-length compatibility effect in that the minimum amount of SDS partitioned to the interface for C(12) oil. The droplet size measurements revealed a maximum size of droplets for C(12) oil. Penetration of oil molecules into SDS film at the interface has been proposed to account for the maximum droplet size and minimum partitioning of SDS at the oil/water interface for C(12) oil+SDS emulsion system. The TIA, as determined from our ultrafiltration method, was consistently two orders of magnitude greater than that calculated from the droplet size measured by light scattering. Possible explanations for this disparity are discussed.  相似文献   

9.
Fan SK  Hsu YW  Chen CH 《Lab on a chip》2011,11(15):2500-2508
A water-core and oil-shell encapsulated droplet exhibits several advantages including enhanced fluidic manipulation, reduced biofouling, decreased evaporation, and simplified device packaging. However, obtaining the encapsulated droplet with an adjustable water-to-oil volume ratio and a further removable oil shell is not possible by reported techniques using manual pipetting or droplet splitting. We report a parallel-plate device capable of generation, encapsulation, rinsing, and emersion of water and/or oil droplets to achieve three major aims. The first aim of our experiments was to form encapsulated droplets by merging electrowetting-driven water droplets and dielectrophoresis-actuated oil droplets whose volumes were precisely controlled. 25 nL water droplets and 2.5 nL non-volatile silicone oil droplets with various viscosities (10, 100, and 1000 cSt) were individually created from their reservoirs to form encapsulated droplets holding different water-to-oil volume ratios of 10:1 and 2:1. Secondly, the driving voltages, evaporation rates, and biofouling of the precise encapsulated droplets were measured. Compared with the bare and immersed droplets, we found the encapsulated droplets (oil shells with lower viscosities and larger volumes) were driven at a smaller voltage or for a wider velocity range. In the dynamic evaporation tests, at a temperature of 20 ± 1 °C and relative humidity of 45 ± 3%, 10 cSt 10:1 and 2:1 encapsulated droplets were moved at the velocity of 0.25 mm s(-1) for 22 and 35 min until losing 16.6 and 17.5% water, respectively, while bare droplets followed the driving signal for only 6 min when 11.4% water was lost. Evaporation was further diminished at the rate of 0.04% min(-1) for a carefully positioned stationary encapsulated droplet. Biofouling of 5 μg ml(-1) FITC-BSA solution was found to be eliminated by the encapsulated droplet from the fluorescent images. The third aim of our research was to remove the oil shell by dissolving it in an on-chip rinsing reservoir containing hexane. After emersion from the rinsing reservoir, the bare droplet was restored as hexane rapidly evaporated. Removal of the oil shell would not only increase the evaporation of the core droplet when necessary, but also enhance the signal-to-noise ratio in the following detection steps.  相似文献   

10.
The microstructure of o/w microemulsions, stabilized by sodium dodecyl benzene sulfonate (SDBS) and sodium dodecyl sulfate (SDS) with different cosurfactants, has been studied by partitioning of a dye, phenol red, between the oil‐water interface and bulk water. The cosurfactants used are propan‐1‐ol, propan‐2‐ol, butan‐1‐ol, butan‐2‐ol, pentane‐1‐ol, pentane‐2‐ol, and pentan‐3‐ol. The effects of changing the oil volume fraction and surfactant‐cosurfactant w/w ratio on the oil‐water interface and droplet size have also been discussed. Larger droplet size was predicted for SDS than SDBS. The predicted droplet radius increased with increase in the oil fraction, decrease in the surfactant concentration, increase in the C‐number of the linear cosurfactant, and decrease in branching of the cosurfactant. Surfactant‐cosurfactant ratio and pH did not affect the droplet size significantly. The minimum concentrations of surfactants with which microemulsions were formed were found to be higher for larger oil fraction, smaller C‐number of the alcohol, more branching of the alcohol, and higher pH.  相似文献   

11.
Coacervate behavior of polyelectrolyte complexes has been studied by many papers. Few studies have focused on the coacervate behavior of amphoteric polymer. In this study, amphoteric copolymer of diallyldimethylammonium chloride (DM) and sodium styrenesulfonate (SS) (the copolymer was noted as DMS) was synthesized with the mole content of SS to DM ranged from 0 to 10%. Firstly, DMS was characterized by static light scattering, FTIR, 1H-NMR, TGA and DSC. Then, its phase and coacervate behaviors were studied. Turbidity was utilized as an indicator for the coacervate formation. It was found that when the SS content was more than 4 mol%, DMS coacervate would be formed in deionized water at a certain concentration. Temperature and pH have no effect on the formation of DMS coacervate. Meanwhile, salts has a great influence on the DMS coacervation. Unlike the results of the other polyelectrolyte complexes, Na2SO4, Na2HPO4, NaCOOCH3, sodium citrate and NaI cannot prevent the DMS coacervate formation. However, the addition of NaCl, NaNO3, NaBr and NaSCN can prevent the coacervate formation. The influence cannot be described by Hofmeister-like behavior. Results of surface tension and fluorescence spectrum presented that the driving forces to formation of DMS coacervate are the electrostatic interaction and the intermolecular hydrophobic interaction.  相似文献   

12.
In this study the potential ability of food-grade particles (at the droplet interface) to enhance the oxidative stability was investigated. Sunflower oil-in-water emulsions (20%), stabilised solely by food-grade particles (Microcrystalline cellulose (MCC) and modified starch (MS)), were produced under different processing conditions and their physicochemical properties were studied over time. Data on droplet size, surface charge, creaming index and oxidative stability were obtained. Increasing the food-grade particle concentration from 0.1% to 2.5% was found to decrease droplet size, enhance the physical stability of emulsions and reduce the lipid oxidation rate due to the formation of a thicker interfacial layer around the oil droplets. It was further shown that, MCC particles were able to reduce the lipid oxidation rate more effectively than MS particles. This was attributed to their ability to scavenge free radicals, through their negative charge, and form thicker interfacial layers around oil droplets due to the particles size differences. The present study demonstrates that the manipulation of emulsions' interfacial microstructure, based on the formation of a thick interface around the oil droplets by food-grade particles (Pickering emulsions), is an effective approach to slow down lipid oxidation.  相似文献   

13.
We report on the formation of coacervate droplets from poly(diallyldimethylammonium chloride) with either adenosine triphosphate or carboxymethyl‐dextran using a microfluidic flow‐focusing system. The formed droplets exhibit improved stability and narrower size distributions for both coacervate compositions when compared to the conventional vortex dispersion techniques. We also demonstrate the use of two parallel flow‐focusing channels for the simultaneous formation and co‐location of two distinct populations of coacervate droplets containing different DNA oligonucleotides, and that the populations can coexist in close proximity up to 48 h without detectable exchange of genetic information. Our results show that the observed improvements in droplet stability and size distribution may be scaled with ease. In addition, the ability to encapsulate different materials into coacervate droplets using a microfluidic channel structure allows for their use as cell‐mimicking compartments.  相似文献   

14.
电子墨水微胶囊及电泳显示原型器件的制备   总被引:11,自引:0,他引:11  
TiO2 particles coated with polystyrene which were prepared via in situ polymerization and oil green dye were dispersed in tetrachloroethylene and xylene, the mixture came to be electrophoretic ink and was encapsulated in to microcapsules by complex coacervation from gelatin and a hydrolyzed copolymer of styrene and maleic anhydride(SMA). It was demonstrated that the membranes of the microcapsules were formed from nano sized coacervate droplets resulting from gelation and hydrolyzed SMA, which leads to a compact membrane structure. Microcapsules were characterized in terms of microstructure, morphologies by scanning electron microscopy(SEM). Electrophoretic display prototype was prepared by coating electrophoretic ink microcapsules slurry on ITO glass with nearly single layer and sealed by UV curable adhesires. The characters “Zheda” in Chinese was firstly displayed at a low volt 9 V D. C..  相似文献   

15.
 The interaction of a nonionic polymeric surfactant with an anionic surfactant at the oil–water interface has been studied by its effects on the droplet size, stability and rheology of emulsions. Oil-in-water (o/w) emulsions were prepared using isoparaffinic oil and mixtures of a nonionic polymeric surfactant with an anionic surfactant. The macro-molecular surfactant was a graft copolymer with a backbone of polymethyl methacrylate and grafted polyethylene oxide (a graft copolymer with PEO chains of MW=750). The anionic surfactant was sodium dodecyl sulfate (SDS). The stabiliza-tion of the emulsion droplets was found to be different when using one or the other surfactant. The mechanism of stabilization of emulsion droplets by the macro-molecular surfactant is of the steric type while the stabilization by anionic surfactant is of the electrostatic repulsion type. Emulsions stabilized with mixtures present both types of stabilization. Other effects on the preparation and stabilization of emulsions were found to be dependent on properties associated with the surfactant molecular weight such as the Marangoni effect and Gibbs elasticity. The initial droplet size of the emulsions showed a synergistic effect of the surfactant combination, showing a minimum for the mixtures compared to the pure components. Emulsion stability also shows a synergistic interaction of both surfactants. Rheological measurements allow for the estimation of the interparticle interaction when measured as a function of volume fraction. Most of the effects observed can be attributed to the differences in interfacial tension and droplet radius produced by both surfactants and their mixtures. The elastic moduli are well explained on the basis of droplet deformation. Ionic versus steric stabilization produce little difference in the observed rheology, the only important differences observed concerned the extent of the linear viscoelasticity region. Received: 22 November 1996 Accepted: 24 March 1997  相似文献   

16.
The interaction between nonionic derivatives of cellulose, hydroxypropylmethyl cellulose (HPMC) and methyl cellulose (MC), and ionic surfactant, sodium dodecylsulfate (SDS) were investigated by conductometric titration method, at 30°C. Obtained titration curves show two break points: critical aggregation concentration (cac) defined as the concentration of SDS at which interaction starts, and polymer saturation concentration (psp) as the concentration at which interaction finishes. Changes of characteristic concentration breaks were determined in dependence on concentration and molecular characteristics of cellulose derivatives (degree of substitution (DS) and molecular mass, i.e. intrinsic viscosity). It was shown that the first break point, cac, is independent of polymer concentration; while the second break point, psp, increases as polymer concentration increases, as described by a linear correlation. The slopes of linear relationship justify the DS on the intensity of the cellulose derivatives–SDS interaction. Changes in the intrinsic viscosity of cellulose derivatives do not exhibit influence on the interaction with SDS.  相似文献   

17.
To study the effects of pre-adsorbed emulsifier on Pickering emulsion stability, the preparation of silicone oil emulsions by TiO2 suspensions pre-adsorbed sodium dodecyl sulfate (SDS) at the fixed TiO2 concentration of 0.15 g was carried out below a fiftieth of critical micelle concentration (cmc) of SDS, where all added amounts of SDS are adsorbed on the TiO2 particles. The stability of the Pickering emulsions incorporating TiO2 suspensions pre-adsorbed SDS was investigated by measuring the volume fraction of emulsified silicone oil, adsorbed amounts of TiO2 suspensions pre-adsorbed SDS, oil droplet size, and some rheological responses such as the stress-strain sweep curve and strain and frequency dependences of dynamic viscoelastic moduli. The silicone oil was almost emulsified by TiO2 suspensions pre-adsorbed SDS above cmc/103. Increasing in the adsorbed amount of SDS on the TiO2 particles leads to an increase in the adsorbed amounts of TiO2 suspensions pre-adsorbed SDS. Such silicone oil emulsions for the first time showed two yield stresses in the stress-strain sweep curve as well as the oscillatory stress-strain curve. The respective yield stresses also increase with an increase in the adsorbed amounts of TiO2 suspensions pre-adsorbed SDS. From such characteristic rheological properties and a partial sedimentation of some TiO2 particles remained in the dispersion medium, we proposed the formation of a three dimensional network of the flocculated TiO2 particles pre-adsorbed SDS on the silicone oil droplets.  相似文献   

18.
Micrometer-sized, monodisperse, hollow polystyrene (PS)/poly(ethylene glycol dimethacrylate) (PEGDM) composite particles with a single hole in the shell were prepared by seeded polymerization using (ethylene glycol dimethacrylate/xylene)-swollen PS particles in the presence of sodium dodecyl sulfate (SDS). Single holes were observed at SDS concentrations above 3 mM, much lower than in the PS/polydivinylbenzene (PDVB) system previously reported (above 45 mM). Phase separation inside droplets occurred at lower conversion in the PEGDM system than the PDVB system. Phase separation in the droplet at the early stage of the polymerization is an important factor for the formation of the single hole in the shell. Part CCCXIII of the series “Studies on Suspension and Emulsion.”  相似文献   

19.
Starting from the fourfold ethynyl-substituted chromophore 1,3,6,8-tetraethynylpyrene as core, a series of polyphenylene dendrimers was prepared in high yield by combining divergent and convergent growth methods. The fluorescence quantum yields (Q(f)>0.92) of the encapsulated pyrene chromophore were independent of the size of the polyphenylene shell. Fluorescence quenching studies and temperature-dependent fluorescence spectroscopy were performed to investigate the site isolation of the core. They indicate that a second-generation dendrimer layer is needed to efficiently shield the encapsulated pyrene and prevent aggregate formation. Alkali-metal reduction of the encapsulated pyrene core was carried out to afford the corresponding pyrene radical anions, for which hampered electron transfer to the core was observed with increasing dendrimer generation, which is further proof of the site isolation due to the polyphenylene shell. To improve film formation and solubility of the material, solubilizing alkyl chains were introduced on the periphery of the spherical particles. Furthermore, highly transparent films obtained by a simple drop-casting method showed blue emission mainly from the unaggregated species. The materials presented herein combine high quantum efficiency, good solubility, and improved film-forming properties, which make them possible candidates for several applications in electronic devices.  相似文献   

20.
The novel approach described allows to characterise the surfactant-polymer interaction under several sodium dodecyl sulphate (SDS) concentrations (0-20 mM) using size exclusion chromatography (SEC) with online multi-angle light scattering (MALS) and refractometric (RI) detection. Three different cellulose derivatives, hydroxypropyl cellulose (HPC), hydroxypropyl methyl cellulose (HPMC) and hydroxyethyl cellulose (HEC), have been studied in solution containing 10 mM NaCl and various concentrations of sodium dodecyl sulphate. It is shown that this approach is well suited for successful application of both Hummel-Dreyer and multi-component light scattering principles and yields reliable molecular masses of both the polymer complex and the polymer itself within the complex, the amount of surfactant bound into the complex as well as appropriate values of the refractive index increment (dn/dc)micro, of both the complex and the polymer in question. The more hydrophobic derivatives HPC and HPMC adsorbed significantly more SDS than HEC. The inter-chain interactions close to critical aggregation concentration (cac) were clearly seen for HPC and HPMC as an almost two-fold average increase in polymer molecular mass contained in the complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号