首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solubilization of water and aqueous NaCl solutions in mixed reverse micellar systems of anionic surfactant AOT and nonionic surfactants in n-heptane was studied. It was found that the maximum solubilization capacity of water was higher in the presence of certain concentrations of NaCl electrolyte, and these concentrations increased with the increase of nonionic surfactant content and their EO chain length. Soluibilization capacity was enhanced by mixing AOT with nonionic surfactants. The observed phenomena were interpreted in terms of the stability of the interfacial film of reverse micellar microdroplet and the packing parameter of the surfactant that formed mixed reverse micelles.  相似文献   

2.
反胶束是两亲分子在非极性溶剂中形成的一种有序组合体,在医药、化工、采油、胶束催化及酶催化等领域中有重要应用.与胶束溶液相比,人们对反胶束的形成与结构的了解至今仍不充分.特别是对于由混合表面活性剂形成的反胶束的研究几乎无人涉及.本文采用动态光散射、电导及荧光光谱等手段对阴离子表面活性剂AOT与非离子表面活性剂形成的混合反胶束进行了研究,旨在探讨利用表面活性剂的复配来调节和控制反胶束的结构和性能.亚实验部分二异辛基磺化琉璃酸钠(AOT,Sigma公司);Brij30为含4个氧乙烯基(EO基)的十二碳醇(AcrosOrgani…  相似文献   

3.
The recombination of thiocyanate anion radicals, (SCN) 2 , formed pulse radiolytically within the water pools of reverse micelles stabilized with anionic AOT and nonionic Igepal surfactants, was proved as an indicator reaction to study intermicellar exchange. It was found that the exchange process is slower inIgepal than in AOT reverse micelles with the same water to surfactant ratio. The apparent activation enthalpy and entropy of the exchange process were determined in different alkanes. For the AOT and Igepal reverse micelles the activation parameters increase with the droplet size, but for the AOT systems they do not significantly change with the increase of droplet concentration. For non-percolated systems the activation parameters for Igepal reverse micelles approach those for AOT reverse micelles. This result supports existing suggestions that the mechanism of intermicellar exchange does not differ in principle between reverse micelles stabilized with ionic and nonionic surfactants.  相似文献   

4.
The conductivity of AOT/IPM/water reverse micellar systems as a function of temperature, has been found to be non-percolating at three different concentrations (100, 175 and 250 mM), while the addition of nonionic surfactants [polyoxyethylene(10) cetyl ether (Brij-56) and polyoxyethylene(20) cetyl ether (Brij-58)] to these systems exhibits temperature-induced percolation in conductance in non-percolating AOT/isopropyl myristate (IPM)/water system at constant compositions (i.e., at fixed total surfactant concentration, omega and X(nonionic)). The influence of total surfactant concentration (micellar concentration) on the temperature-induced percolation behaviors of these systems has been investigated. The effect of Brij-58 is more pronounced than that of Brij-56 in inducing percolation. The threshold percolation temperature, Tp has been determined for these systems in presence of additives of different molecular structures, physical parameters and/or interfacial properties. The additives have shown both assisting and resisting effects on the percolation threshold. The additives, bile salt (sodium cholate), urea, formamide, cholesteryl acetate, cholesteryl benzoate, toluene, a triblock copolymer [(EO)13(PO)30(EO)13, Pluronic, PL64], polybutadiene, sucrose esters (sucrose dodecanoates, L-1695 and sucrose monostearate S-1670), formamide distinctively fall in the former category, whereas sodium chloride, cholesteryl palmitate, crown ether, ethylene glycol constitute the latter for both systems. Sucrose dodecanoates (L-595) had almost marginal effect on the process. The observed behavior of these additives on the percolation phenomenon has been explained in terms of critical packing parameter and/or other factors, which influence the texture of the interface and solution properties of the mixed reverse micellar systems. The activation energy, Ep for the percolation process has been evaluated. Ep values for the AOT/Brij-56 systems have been found to be lower than those of AOT/Brij-58 systems. The concentration of additives influence the parameters Tp and Ep for both systems. A preliminary report for the first time on the percolation phenomenon in mixed reverse micelles in presence of additives has been suggested on the basis of these parameters (Tp and Ep).  相似文献   

5.
The temperature‐induced percolation of water/AOT/isooctane microemulsions was studied in the presence of the Tween series of polyoxyethylated nonionic surfactants employing conductometry. Percolation temperatures were determined utilizing the Sigmoidal‐Boltzmann equation procedure. The results were analyzed in terms of the percolation temperature, scaling parameters, activation energy, and thermodynamics of the clustering process. It was observed that the Tween series of surfactants aided the percolation process, and the percolation parameters were found to be independent of the hydrophobic chain length of these additives. The percolation temperature was found to be dependent on the concentration of the Tweens. It was concluded that the influence of the Tween series of surfactants on the percolation phenomenon was due to the number of ethylene oxide moieties in the head groups region of the additive. The effects of these additives was described in terms of modifications in the microemulsion's interfacial layer, outer oil layer, viscosity of the water micropool, and interactions between the anionic head groups of AOT.  相似文献   

6.
Solubilization of water in mixed reverse micellar systems with anionic surfactant (AOT) and nonionic surfactants (Brijs, Spans, Tweens, Igepal CO 520), cationic surfactant (DDAB)-nonionic surfactants (Brijs, Spans, Igepal CO 520), and nonionic (Igepal CO 520)-nonionics (Brijs, Spans) in oils of different chemical structures and physical properties (isopropyl myristate, isobutyl benzene, cyclohexane) has been studied at 303 K. The enhancement in water solubilization has been evidenced in these systems with some exceptions. The maximum water solubilization capacity (omega(0,max)) in mixed reverse micellar systems occurred at a certain mole fraction of a nonionic surfactant, which is indicated as X(nonionic,max). The addition of electrolyte (NaCl or NaBr) in these systems tends to enhance their solubilization capacities further both at a fixed composition of nonionic (X(nonionic); 0.1) and at X(nonionic,max) at 303 K. The maximum in solubilization capacity of electrolyte (omega(max)) was obtained at an optimal electrolyte concentration (designated as [NaCl](max) or [NaBr](max)). All these parameters, omega(0,max) vis-a-vis X(nonionic,max) and omega(max) vis-a-vis [NaCl](max), have been found to be dependent on the surfactant component (content, EO chains, and configuration of the polar head group, and the hydrocarbon moiety of the nonionic surfactants) and type of oils. The conductance behavior of these systems has also been investigated, focusing on the influences of water content (omega), content of nonionics (X(nonionic)), concentration of electrolyte ([NaCl] or [NaBr]), and oil. Percolation of conductance has been observed in some of these systems and explained by considering the influences of the variables on the rigidity of the oil/water interface and attractive interactions of the surfactant aggregates. Percolation zones have been depicted in the solubilization capacity vs X(nonionic) or [electrolyte] curves in order to correlate with maximum in water or electrolyte solubilization capacity. The overall results, obtained in these studies, have been interpreted in terms of the model proposed by Shah and co-workers for the solubility of water in water-in-oil microemulsions, as their model proposed that the two main effects that determine the solubility of these systems are curvature of the surfactant film separating the oil and water and interactions between water droplets.  相似文献   

7.
 The kinetics and thermodynamics of the basic hydrolysis of crystal violet (CV) in mixed reverse micelles formed with anionic surfactant AOT and nonionic surfactants have been investigated. It was found that the mixed reverse micelles had inhibitory effects on CV hydrolysis compared with the normal aqueous solution, and the equilibrium constant K of the reaction in mixed reverse micellar systems is smaller than that in pure water. The influence of water content and surfactant composition in reverse micelles on the second-order rate constant k 1 of the positive reaction, on the first-order rate constant k -1 of the reverse reaction, as well as on the equilibrium constant K of the reaction has been studied, and the results obtained were interpreted in terms of the nature of surfactants and the properties of microenvironment where the reaction took place. Received: 24 October 1997 Accepted: 18 March 1998  相似文献   

8.
The primary objective of the present study is to understand how the different nonionic surfactants modify the anisotropic interface of cationic water-in-oil (W/O) microemulsions and thus influences the catalytic efficiency of surface-active enzymes. Activity of Chromobacterium viscosum lipase (CV-lipase) was estimated in several mixed reverse micelles prepared from CTAB and four different nonionic surfactants, Brij-30, Brij-92, Tween-20, and Tween-80/water/isooctane/n-hexanol at different z ([cosurfactant]/[surfactants]) values, pH 6 (20 mM phosphate), 25 degrees C across a varying range of W0 ([water]/[surfactants]) using p-nitrophenyl-n-octanoate as the substrate. Lipase activity in mixed reverse micelles improved maximum up to approximately 200% with increasing content of non-ionic surfactants compared to that in CTAB probably due to the reduced positive charge density as well as plummeted n-hexanol (competitive inhibitor of lipase) content at the interfacial region of cationic W/O microemulsions. The highest activity of lipase was observed in CTAB (10 mM) + Brij-30 (40 mM)/isooctane/n-hexanol)/water system, k2 = 913 +/- 5 cm3 g-1 s-1. Interestingly, this observed activity is even higher than that obtained in sodium bis (2-ethyl-1-hexyl) sulfosuccinate (AOT)/n-heptane reverse micelles, the most popular W/O microemulsion in micellar enzymology. To ascertain the influence of non-ionic surfactants in improving the activity of surface-active enzymes is not limited to lipase only, we have also investigated the catalytic activity of Horseradish peroxidase (HRP) in different mixed W/O microemulsions. Here also following the similar trend as observed for lipase, HRP activity enhanced up to 2.5 fold with increasing concentration of nonionic surfactants. Finally, the enzyme activity was correlated with the change in the microenvironment of mixed reverse micelles by steady-state fluorescence study using 8-anilino-1-napthalenesulphonic acid (ANS) as probe.  相似文献   

9.
The dynamics of solvent and rotational relaxation of Coumarin 480 and Coumarin 490 in glycerol containing bis-2-ethyl hexyl sulfosuccinate sodium salt (AOT) reverse micelles have been investigated with steady-state and time-resolved fluorescence spectroscopy. We observed slower solvent relaxation of glycerol confined in the nanocavity of AOT reverse micelles compared to that in pure glycerol. However, the slowing down in the solvation time on going from neat glycerol to glycerol confined reverse micelles is not comparable to that on going from pure water or acetonitrile to water or acetonitrile confined AOT reverse micellar aggregates. While solvent relaxation times were found to decrease with increasing glycerol content in the reverse micellar pool, rotational relaxation times were found to increase with increase in glycerol content.  相似文献   

10.
The conductance behaviors of AOT in alkanol (hexanol, heptanol, octanol, and decanol) reverse microemulsions have been investigated. The percolation phenomenon induced by water is observed in the water/AOT/decanol system at 15°C and 30°C, and the water/AOT/octanol system at 15°C. The percolation phenomenon of water/AOT/alkanol systems is discussed from the interaction between the hydroxy group of alkanol and the polar group of AOT, droplets diffusion coefficient, and the rate constant for droplets collision. The droplets size and diffusion coefficient of the water/AOT/alkanol systems have also been studied by modifying the water concentration. The results show that hydrodynamic diameter of droplets decreases and diffusion coefficient increases with the increasing of water content, which may be explained by the polarity of alkanol phase.  相似文献   

11.
混合表面活性剂在非极性溶剂中的聚集行为   总被引:1,自引:0,他引:1  
表面活性剂在非极性溶剂中的聚集行为比在水溶液中复杂得多. 水溶液中表面活性剂有一明确的临界胶束浓度(CMC),而在非极性溶剂中至今对CM C概念仍有怀疑[1], 但已有多种手段如染料增溶法、水增溶法、光散射法、荧光偏振、紫外和核磁共振谱等证实并测定了非极性溶剂中 CMC 的存在[1~5]. 表面活性剂在非极性溶剂中以非离子化状态存在, 其缔合主要靠两亲分子之间的偶极-偶极以及离子对相互作用, 那么在一种表面活性剂溶液中加入另一种表面活性剂, 即表面活性剂的复配, 必然对其聚集行为产生重大影响, 但迄今为止, 尚未见关于混合表面活性剂在非极性溶剂中聚集行为的报道. 本文采用碘光谱法和水增溶法测定了阴离子表面活性剂AOT 和非离子表面活性剂 Brij30 混合后在正庚烷中形成反胶束的 CMC, 以期考察表面活性剂的复配对其聚集行为的影响。  相似文献   

12.
Refractive index measurements on water/AOT/n-heptane microemulsions as a function of the volume fraction of the dispersed phase (water plus AOT) and of the water/AOT molar ratio R have been performed at 25°C. The refractive index was found to vary monotonically with without any change in rate during the crossover of the percolation threshold. Such a behavior suggested that, well above the percolation threshold, the water-AOT-n-heptane microemulsions are still formed by water-containing AOT reversed micelles dispersed in the oil phase. The analysis of the experimental data allowed an evaluation the fraction of the water molecules bonded to the AOT head group as a function of R.  相似文献   

13.
Cyclic voltammetry (CV) and viscosity measurements have been employed to study the aggregation behavior of mixed micellar systems of anionic surfactant (dioctyl sulfosuccinate sodium salt, AOT) with conventional nonionic surfactants such as Brij 35/TritonX-100/Tween 20/Tween 80/Myrj 45 and two triblock copolymers (L64 and F68). Critical micelle concentration (cmc) values have been determined for various micellar systems from CV measurements using 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) as an electroactive probe at 25 °C. Diffusion coefficient (D) has been evaluated from Randles–Sevcik equation which showed an overall decrease for most of the binary systems. The negative values of interaction parameters (β) obtained from regular solution theory suggest the synergistic behavior in all the binary systems except AOT + Tween 80 mixtures. The mixed systems of AOT with triblock copolymers showed stronger synergistic interactions than that of mixed systems of AOT with nonionic surfactants. A comparative evaluation of mixed systems of anionic surfactants AOT and sodium dodecyl sulfate with Myrj 45 and AOT + L64 and F68 has been made on the basis of different micellar parameters and structural properties of surfactants. Viscosity measurements also show similar type of interactions in the mixed micelles.  相似文献   

14.
The well-characterized, monodisperse nature of reverse micelles formed by sodium bis-(2-ethylhexyl)sulfosuccinate/water/isooctane and their usefulness in assimilating compounds of varied interests have been exploited to investigate the effect of acetyl modified amino acids (MAA) viz., N-acetyl-L-glycine (NAG), N-acetyl-L-aspartic acid (NAA) and N-acetyl-L-cysteine (NAC), on the water pool and physiochemical properties. Non-invasive techniques such as FTIR and UV-vis absorption spectroscopy have been employed to analyze the interactions of MAA with core water and the AOT headgroup. The micropolarities on both sides of AOT interface have further been investigated by UV-vis absorption probes, methyl orange (MO) and methylene blue (MB). The dynamics of water and temperature induced percolation process have also been studied. The MAA molecules have been found to assist the process with the increase in water content where as a contrary behavior has been observed with the increase in temperature. Conductivity results have been further rationalized in terms of scaling equations, which delineate the dynamic nature of the percolation process. The results have also been analyzed in the light of activation energy of the percolation process and thermodynamics of droplet clustering.  相似文献   

15.
A new class of photoreactive surfactants (PRSs) is presented here, consisting of amphiphiles that can also act as reagents in photochemical reactions. An example PRS is cobalt 2-ethylhexanoate (Co(EH)(2)), which forms reverse micelles (RMs) in a hydrocarbon solvent, as well as mixed reversed micelles with the standard surfactant Aerosol-OT (AOT). Small-angle neutron scattering (SANS) data show that mixed AOT/PRS RMs have a spherical structure and size similar to that of pure AOT micelles. Excitation of the ligand-to-metal charge transfer (LMCT) band in the PRSs promotes electron transfer from PRS to associated metal counterions, leading to the generation of metal and metal-oxide nanoparticles inside the RMs. This work presents proof of concept for employing PRSs as precursors to obtain nearly monodisperse inorganic nanoparticles: here both Co(3)O(4) and Bi nanoparticles have been synthesized at high metal concentration (10(-2) M) by simply irradiating the RMs. These results point toward a new approach of photoreactive self-assembly, which represents a clean and straightforward route to the generation of nanomaterials.  相似文献   

16.
Water dynamics--the effects of ions and nanoconfinement   总被引:1,自引:0,他引:1  
Hydrogen bond dynamics of water in highly concentrated NaBr salt solutions and reverse micelles are studied using ultrafast 2D-IR vibrational echo spectroscopy and polarization-selective IR pump-probe experiments performed on the OD hydroxyl stretch of dilute HOD in H(2)O. The vibrational echo experiments measure spectral diffusion, and the pump-probe experiments measure orientational relaxation. Both experimental observables are directly related to the structural dynamics of water's hydrogen bond network. The measurements performed on NaBr solutions as a function of concentration show that the hydrogen bond dynamics slow as the NaBr concentration increases. The most pronounced change is in the longest time scale dynamics which are related to the global rearrangement of the hydrogen bond structure. Complete hydrogen bond network randomization slows by a factor of approximately 3 in approximately 6 M NaBr solution compared to that in bulk water. The hydrogen bond dynamics of water in nanoscopically confined environments are studied by encapsulating water molecules in ionic head group (AOT) and nonionic head group (Igepal CO 520) reverse micelles. Water dynamics in the nanopools of AOT reverse micelles are studied as a function of size by observing orientational relaxation. Orientational relaxation dynamics deviate significantly from bulk water when the size of the reverse micelles is smaller than several nm and become nonexponential and slower as the size of the reverse micelles decreases. In the smallest reverse micelles, orientational relaxation (hydrogen bond structural randomization) is almost 20 times slower than that in bulk water. To determine if the changes in dynamics from bulk water are caused by the influence of the ionic head groups of AOT or the nanoconfinement, the water dynamics in 4 nm nanopools in AOT reverse micelles (ionic) and Igepal reverse micelles (nonionic) are compared. It is found that the water orientational relaxation in the 4 nm diameter nanopools of the two types of reverse micelles is almost identical, which indicates that confinement by an interface to form a nanoscopic water pool is a primary factor governing the dynamics of nanoscopic water rather than the presence of charged groups at the interface.  相似文献   

17.
Critical micelle concentrations of AOT in water in the presence of sodium chloride, sodium acetate, sodium propionate, and sodium butyrate were determined at 25 degrees C by the surface tension method. The co-ions do not have any effect on the value of critical micelle concentration. The surface density of AOT at the air-water interface increases in the presence of added electrolyte and attains a maximum value of 2.5+/-0.1 mol m-2 at a particular electrolyte concentration which is different for sodium chloride and the other three electrolytes. From the Corrin-Harkins plot it has been found that for AOT micelles the counterion binding constant has values 0.40 and 0.82 below and above approximately 0.015 mol kg-1 electrolyte concentration (c*), respectively. Measurement of sodium ion activity from the EMF method has confirmed such a shift in the counterion binding constant of AOT at c*. The higher value of the counterion binding constant for AOT has been reported for the first time. From fluorescence spectroscopy it has been found that the aggregation number of AOT is 22 in water and its average aggregation numbers in the presence of electrolytes are about 34 and 136 below and above c*, respectively. The increase by a factor of 2 in the counterion binding constant is shown to be due to a change in the shape of the AOT micelles around c*. The shape of AOT micelles in the electrolyte concentration range c* is inferred to be oblate spheroid and a change from this shape appears to occur above c*. A sudden increase in the polarity of the micelle-solution interface is also observed above c*.  相似文献   

18.
Neutron Spin-Echo (NSE) spectroscopy has been employed to study the interfacial properties of reverse micelles formed with the common surfactant sodium bis-2-ethylhexyl-sulfosuccinate (AOT) in liquid alkane solvents and compressed propane. NSE spectroscopy provides a means to measure small energy transfers for incident neutrons that correspond to thermal fluctuations on the nanosecond time scale and has been applied to the study of colloidal systems. NSE offers the unique ability to perform dynamic measurements of thermally induced shape fluctuation in the AOT surfactant monolayer. This study investigates the effects of the bulk solvent properties, water content, and the addition of octanol cosurfactant on the bending elasticity of AOT reverse micelles and the reverse micelle dynamics. By altering these solvent properties, specific trends in the bending elasticity constant, k, are observed where increasing k corresponds to an increase in micelle rigidity and a decrease in intermicellar exchange rate, k(ex). The observed corresponding trends in k and k(ex) are significant in relating the dynamics of microemulsions and their application as a reaction media. Compressed propane was also examined for the first time with a high-pressure, compressible bulk solvent where variations in temperature and pressure are used to tune the properties of the bulk phase. A decrease in the bending elasticity is observed for the d-propane/AOT/W = 8 reverse micelle system by simultaneously increasing the temperature and pressure, maintaining constant density. With isopycnic conditions, a constant translational diffusion of the reverse micelles through the bulk phase is observed, conforming to the Stokes-Einstein relationship.  相似文献   

19.
It was found that, in a suitable pressure range, ethylene could increase the amount of solubilized water in reverse micelles of sodium bis-2-ethylhexylsulfosuccinate (AOT) in longer chain n-alkanes considerably, where the phase separation was induced by a micelle-micelle interaction mechanism. The microenvironments in the ethylene-stabilized reverse micelles were investigated by the UV-vis adsorption spectra using methyl orange (MO) as a probe. The maximum absorption of MO decreased with the increase of ethylene pressure at constant W0 value. Conductivity measurements demonstrated that the percolation temperature of the reverse micellar system increased considerably after compressed ethylene was added. The results of this work confirm that some small-molecule gases have the function of cosurfactants to stabilize reverse micelles.  相似文献   

20.
The refolding kinetics of the reduced, denatured hen egg white lysozyme in sodium bis(2-ethylhexyl)sulfosuccinate (AOT)-isooctane-water reverse micelles at different water-to-surfactant molar ratios has been investigated by fluorescence spectroscopy and UV spectroscopy. The oxidative refolding of the confined lysozyme is biphasic in AOT reverse micelles. When the water-to-surfactant molar ratio (omega 0) is 12.6, the relative activity of encapsulated lysozyme after refolding for 24 h in AOT reverse micelles increases 46% compared with that in bulk water. Furthermore, aggregation of lysozyme at a higher concentration (0.2 mM) in AOT reverse micelles at omega 0 of 6.3 or 12.6 is not observed; in contrast, the oxidative refolding of lysozyme in bulk water must be at a lower protein concentration (5 microM) in order to avoid a serious aggregation of the protein. For comparison, we have also investigated the effect of AOT on lysozyme activity and found that the residual activity of lysozyme decreases with increasing the concentration of AOT from 1 to 5 mM. When AOT concentration is larger than 2 mM, lysozyme is almost completely inactivated by AOT and most of lysozyme activity is lost. Together, our data demonstrate that AOT reverse micelles with suitable water-to-surfactant molar ratios are favorable to the oxidative refolding of reduced, denatured lysozyme at a higher concentration, compared with bulk water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号