首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phase behaviors of AOT/heptane (Hp)/formamide (FA), ethylene glycol (EG), propylene glycol (PG), triethylene glycol (TEG) and glycerol (GLY) have been investigated in the absence and presence of a nonionic surfactant, polyoxyethylene(2) cetyl ether (Brij-52) at 303 K. The phase characteristics of (AOT+Brij-52)/Hp/(EG or PG or TEG) have been found to be different from that of AOT/Hp/FA systems in respect of both the area of monophasic domain and the appearance of other mesophases. The area of monophasic domain of (AOT+Brij-52)/Hp/EG depends on the content of Brij-52 (X Brij-52) and shows a maximum at X Brij-52=0.4. A negligible effect on the area of the monophasic domain has been shown by more hydrophobic surfactants, polyoxyethylene(2) stearyl ether (Brij-72) and polyoxyethylene(2) oleyl ether (Brij-92). The effect of oils (dodecane and hexadecane) on the mixed systems stabilized by (AOT+Brij-52) in EG has been investigated. The area of monophasic domain has been found to be dependent on the type of nonaqueous solvents and follows the order GLY>EG>PG>TG. A systematic investigation on the measurement of phase volumes of mixed surfactant systems [AOT+nonionic surfactant(s)] stabilized in oils of different chain lengths (heptane, dodecane and hexadecane) and polar solvent (EG) has been carried out at different compositions of the ingredients to identify the phase transitions of these systems as a function of X Brij-52. The threshold point of phase transition (both W I→W IV and W IV→W II transitions) has been found to be a function of the configuration of added nonionic surfactant, nature of the polar solvent and oil. The conversion of the initial oil/EG droplets into EG/oil droplets with increasing X nonionic has been facilitated for hydrophobic surfactants polyoxyethylene(4) lauryl ether (Brij-30), Brij-52, and Brij-72 in comparison to the hydrophilic surfactants polyoxyethylene(10) cetyl ether (Brij-56) and polyoxyethylene(20) cetyl ether (Brij-58).  相似文献   

2.
Mixed micelles formed with cetyl pyridinium chloride (CPC), cetyl trimethylammonium bromide (CTAB), and polyoxyethylene (10) cetyl ether (Brij-56) mixed in different combinations in aqueous medium have been studied in detail by tensiometric, conductometric, calorimetric, spectrophotometric, and fluorimetric techniques. Different physicochemical properties such as critical micellar concentration (cmc), micellar dissociation, energetic parameters (free energy, enthalpy, and entropy) of micellization, interfacial adsorption, and micellar aggregation number have been determined. The results have been analyzed in terms of the equations of Clint, Motomura, Rosen, Rubingh, Blankschtein et al., and Rubingh and Holland for justification of the experimental cmc, determination of micellar composition parameters, quantification of interaction among the mixed micelle components, and estimation of their activity coefficients.  相似文献   

3.
Solubilization and conductivity studies are carried out with AOT/Brijs (Brij-30, Brij-35, Brij-52, Brij-56, Brij-58, Brij-72, Brij-76, Brij-78)/isooctane/water mixed reverse micellar systems. Replacement of AOT molecules with large head group Brij molecules (Brij-30, Brij-35, Brij-56, Brij-58, Brij-76, Brij-78) decreases the solubilization capacity, whereas those with smaller polar head groups (Brij-52 and Brij-72) increases it. The former blends assist the conductance percolation whereas the latter retard it. An attempt has been taken to obtain more insight on the interfacial composition of the mixed interface with the help of spectrophotometric studies using 7-hydroxycoumarin as the fluorophore. The results obtained from the solubilization and conductometric studies have been correlated with those obtained from the spectroscopic studies.  相似文献   

4.
The influence of poly(ethylene glycol)s additives viz. mono- (EG), di- (DEG), tri- (TEG), tetra- (TeEG) and poly(ethylene glycol)-400 (PEG-400) on temperature-induced electrical percolation of water/AOT/isooctane microemulsion system has been investigated. The composition of microemulsion systems has been kept constant to omega=22 and [additive] = 0.1 M w.r.t. dispersion medium. The effect of increase in the non-polar continuum (S= [Oil]/[AOT]) is indicated by increase in the percolation threshold, theta(c). The findings have been elaborated in terms of validity of scaling laws in the light of the dynamic percolation theory. The activation energy of the process, DeltaEp, has been estimated from Arrhenius plots. Pseudophase concept of the micellar aggregation has been utilized to assess the thermodynamics of clustering of the nanodroplets. The state of trapped water in the micellar core and the corresponding interactions with the AOT head group has been visualized through 1H NMR and FTIR analysis. Results show that at higher omega (>16.0), encapsulated water behaves like free or the bulk water.  相似文献   

5.
The isothermal phase diagram of the quaternary system polyoxyethylene(10) stearyl ether (Brij-76)/1-butanol/isooctane/water has been constructed at 30 degrees C with equal amounts of oil and water. A regular fishtail diagram was obtained, confirming the establishment of hydrophile-lipophile balance (HLB) in the system. Mixing of formamide (FA) [or N,N-dimethyl formamide (DMF)] with water as a cosolvent altered the HLB and decreased the solubilization capacity of the quaternary system. No three-phase body appeared at high FA or DMF content. Similar observations were noted for temperature-induced phase diagrams. The effect of DMF was more pronounced than that of FA in reducing the maximum solubilization capacity. The results have been summarized on the basis of HLB and mutual solubility of the components.  相似文献   

6.
Both volume- and temperature-induced percolation of conductance of w/o microemulsions formed with AOT in cyclic aliphatic and aromatic oils (cyclohexane, cyclohexanone, toluene, and xylenes), and volume percolation of water/AOT/oil systems using linear aliphatic hydrocarbons (n-hexane, n-heptane, n-octane, i-octane, and n-decane) have been studied. The effect of additives, viz. sodium cholate (NaC), sodium deoxycholate (NaDC), cholesterol, n-butanol, and t-butanol, toluene, and xylenes (o, m, and p) on the temperature-induced percolating processes using the oils cyclohexane and cyclohexanone has been examined. The percolation results have been analyzed in the light of scaling equation, and the energy of activation of the ion-transport phenomenon has been evaluated for both pre- and postpercolation stages. From the percolation data, the diameter of the microdispersed water droplets, their population, and surface area have been estimated. The enthalpy of dispersion of water in AOT/oil medium has been determined from isothermal titration calorimetric (ITC) measurements.  相似文献   

7.
Phase diagrams of pseudo-quaternary systems of cetyltrimethylammonium bromide (CTAB)/polyoxyethylene(20)cetyl ether (Brij-58)/water/1-butanol (or 1-pentanol)/n-heptane (or n-decane) at fixed omega (=[water]/[surfactant]) of 55.6 were constructed at different temperatures (293, 303, 313, and 323 K) and different mole fraction compositions of Brij-58 (X(Brij-58)=0, 0.5, and 1.0 in CTAB + Brij-58 mixture). Pure CTAB stabilized systems produced larger single-phase domains than pure Brij-58 stabilized systems. Increasing temperature increased the single-phase domain in the Brij-58 stabilized systems, whereas the domain decreased in the CTAB stabilized systems. For mixed surfactant systems (with X(Brij)=0.5) negligible influence of temperature in the studied range of 293 to 323 K on the phase behavior was observed. Interfacial compositions of the mixed microemulsion systems at different temperature and different compositions were evaluated by the dilution method. The n(a)(i) (number of moles of alcohol at the interface) and n(a)(o) (number of moles of alcohol in the oil phase) determined from dilution experiments were found to decrease and increase respectively for CTAB stabilized systems, whereas an opposite trend was witnessed for Brij-58 stabilized systems. The energetics of transfer of cosurfactants from oil to the interface were found to be exothermic and endothermic for CTAB and Brij-58 stabilized systems, respectively. At equimolar composition of CTAB and Brij-58, the phase diagrams were temperature insensitive, so that the enthalpy of the aforesaid transfer process was zero.  相似文献   

8.
The present study is focused on the evaluation of the interfacial composition, thermodynamic properties, and structural parameters of water-in-oil mixed surfactant microemulsions [(cetylpyridinium chloride, CPC+polyoxyethylene (20) cetyl ether, Brij-58 or polyoxyethylene (20) stearyl ether, Brij-78)/1-pentanol/n-heptane, or n-decane] under various physicochemical environments by the Schulman method of cosurfactant titration of the oil/water interface. The estimation of the number of moles of 1-pentanol at the interface (n(a)(i)) and bulk oil (n(a)(o)) and its distribution between these two domains at the threshold level of stability have been emphasized. The thermodynamics of transfer of 1-pentanol from the continuous oil phase to the interface have been evaluated. n(a)(i),n(a)(i), standard Gibbs free energy (ΔG(t)(0)), standard enthalpy (ΔH(t)(0)), and standard entropy (ΔG(t)(0)) of transfer process have been found to be dependent on the molar ratio of water to surfactant (ω), type of nonionic surfactant and its content (X(Brij-58 or Brij-78)), oil and temperature. A correlation between (ΔH(t)(0)) and (ΔS(t)(0)) is examined at different experimental temperatures. Bulk surfactant composition dependent temperature insensitive microemulsions have been reported. Associated structural parameters, such as droplet dimensions and aggregation number of surfactant and cosurfactant at the droplet interface have been evaluated using a mathematical model after suitable modifications for mixed surfactant systems. In light of these parameters, the prospect of using these microemulsion systems for the synthesis of nanoparticles and the modulation of enzyme activity has been discussed. Correlations of the results in terms of the evaluated physicochemical parameters have been attempted.  相似文献   

9.
Spin-lattice relaxation time, spin-spin relaxation time and two-dimensional nuclear Overhauser enhancement spectroscopy (2D NOESY) experiments of polyoxyethylene lauryl ether (Brij-35) micelles in aqueous solutions at a concentration of 100 times the critical micellar concentration (cmc) give direct evidence that the hydrophilic polyoxyethylene chains, staying in the exterior of the micellar core, are coiled, bent and aligned around the micellar core with a certain number of water molecules included. This hydrophilic layer is in contact with the solvent, water, keeping the micellar solution stable. 1H NMR relaxation time measurements show that the first oxyethylene group next to the alkyl chain participates in the formation of the surface area of the micellar core. The motion of the hydrophilic polyoxyethylene chains is less restricted as compared with the hy-drophobic alkyl chains.  相似文献   

10.
In this contribution, we attempt to correlate the change in water dynamics in a reverse micellar (RM) core caused by the modification of the interface by mixing an anionic surfactant, sodium bis(2-ethylhexyl) sulfosuccinate (AOT), and a nonionic surfactant, tetraethylene glycol monododecyl ether (Brij-30), at different proportions, and its consequent effect on the reactivity of water, measured by monitoring the solvolysis reaction of benzoyl chloride (BzCl). The dimension of the RM droplets at different mixing ratios of AOT and Brij-30 (X(Brij-30)) has been measured using dynamic light scattering (DLS) technique. The physical properties of the RM water have been determined using Fourier transform infrared spectroscopy (FTIR) and compressibility studies, which show that with increasing X(Brij-30), the water properties tend toward that of bulk-like water. The solvation dynamics, probed by coumarin 500 dye, gets faster with X(Brij-30). The rotational anisotropy studies along with a wobbling-in-cone analysis show that the probe experiences less restriction at higher X(Brij-30). The kinetics of the water-mediated solvolysis also gets faster with X(Brij-30). The increased rate of solvolysis has been correlated with the accelerated solvation dynamics, which is another consequence of surfactant headgroup-water interaction.  相似文献   

11.
Mixed micelle formation and synergistic interactions of binary surfactant combinations of sodium nonylphenol polyoxyethylene ether sulfate (NPES) with typical surfactants such as sodium dodecyl sulfate (SDS), Triton X-100 (TX100), cetyl trimethyl ammonium bromide (CTAB), and sodium bis(2-ethylhexyl) sulfosuccinate (AOT) at 25 degrees C in the presence of NaCl have been investigated. The critical micelle concentration of the binary mixtures has been quantitatively estimated by steady-state fluorescence measurements. The micellar characteristics such as composition, activity coefficients, and mutual interaction parameters have been estimated following different theoretical treatments. Investigation on the micellization and synergistic interaction of NPES with four kinds of surfactants showed that the behavior of the binary mixture deviated from the ideal state. The analysis revealed that the interaction parameter values (beta) varied with variation of solvent composition. Besides the strong electrostatic attraction between the oppositely charged surfactant NPES-CTAB mixture, the interaction between NPES and SDS also showed far more deviation from ideal behavior than that of TX100 and AOT. The reason for the synergism is also discussed and the results show that an ionic and a nonionic surfactant character existed concurrently in NPES due to the combination of a sulfate group and polyoxyethylene as a hydrophilic moiety. Zeta potential and diffusion coefficient measurements of micelles confirmed the synergistic interaction between the binary surfactants.  相似文献   

12.
The course of temperature percolation in a w/o microemulsion system comprising water/bis(2-ethylhexyl) sulfosuccinate sodium, AOT/isooctane affected by the presence of additives has been investigated. Additives, viz., organic derivatives of chalcogens including dipyridyl diselenide (Py2Se2), diphenyl diselenide (Ph2Se2), and dipyridyl ditelluride (Py2Te2), have been assimilated in the reverse micellar system. Formulations have been studied in terms of (i) the concentration variation of additives, (ii) the change in omega (= [H2O]/[AOT]), and (iii) the change in the nonpolar continuum, S (= [oil]/[AOT]). Phenyl derivatives hinder the percolation, whereas the pyridyl derivative in moderate amounts favors the phenomenon. The estimated values of the critical exponents are lower than those predicted by the dynamic percolation theory. The association model has been implemented to access the thermodynamic parameters of droplet clustering. Pyridyl compounds are expected to alter the rigidity of the surfactant monolayer, which could help to promote the attractive interdroplet interaction. FT-IR spectroscopy has been used to elucidate the changes occurring in the core water in the presence of organic derivatives of chalcogens as the droplet size is increased. Results have been rationalized in terms of the alteration in the physicochemical behavior of the water/AOT/isooctane microemulsion in the presence of additives.  相似文献   

13.
Studies on the adsorption of Brij-35 and CTAB at the coal-water interface   总被引:1,自引:0,他引:1  
The adsorption behavior of polyoxyethylene (23) lauryl ether (Brij-35) and cetyl trimethyl ammonium bromide (CTAB) on coal sample has been studied. The adsorption process is found to be sensitive to pH, temperature, electrolyte concentration, and the amount of surface active agent. An attempt has been made to explain the adsorption behavior of the surfactants using the Langmuir equation. The extent of adsorption of Brij-35 on coal is found to be the highest at pH 2, which decreases with increase in pH and remains constant in the neutral and alkaline pH regions. But, the adsorption of CTAB exhibits the opposite behavior of that of Brij-35. Adsorption of any of the surfactant at the coal/water interface sharply decreases the apparent viscosity of 55 wt% coal-water slurry (CWS) at a shear rate of 100 s(-1). Electrostatic adsorption of the surfactants on the coal surface decreases the surface charge and renders the coal surface hydrophobic which is manifested in the form of high apparent viscosity of the coal-water slurry under the test conditions.  相似文献   

14.
Spin-lattice relaxation time, spin-spin relaxation time and two-dimensional nuclear Overhauser enhancement spectroscopy (2D NOESY) experiments of polyoxyethylene lauryl ether (Brij-35) micelles in aqueous solutions at a concentration of 100 times the critical micellar concentration (cmc) give direct evidence that the hydrophilic polyoxyethylene chains, staying in the exterior of the micellar core, are coiled, bent and aligned around the micellar core with a certain number of water molecules included. This hydrophilic layer is in contact with the solvent, water, keeping the micellar solution stable. 1H NMR relaxation time measurements show that the first oxyethylene group next to the alkyl chain participates in the formation of the surface area of the micellar core. The motion of the hydrophilic polyoxyethylene chains is less restricted as compared with the hydrophobic alkyl chains.  相似文献   

15.
ApparentpK a values (hereafter writtenpK) for the hydrophilic, negatively-charged indicators 2-hydroxy-5-bromo sodium benzenesulphonate (HBBS), 2-hydroxy-5-nitro sodium benzenesulphonate (HNBS), and 2-(5,7-dinitro-8-hydroxy) sodium naphthalenesulphonate (napthol yellow, NY) in the presence of water-in-heptane microemulsions of bis(2-ethylhexyl) sodium sulphosuccinate (AOT, anionic) and polyoxyethylene (4) dodecyl ether (Brij-30, nonionic) were determined spectrophotometrically. The variables studied were the type of buffer (borate, imidazole, nicotinamide, phosphate, and piperidine) and the ratios [water]/[surfactant] and [buffer]/[surfactant]. Partition experiments between water and heptane and UV-VIS spectra of the indicators in aqueous buffer in the presence of anionic and nonionic aqueous and reversed micelles showed that these indicators are confined within the second hydration shell of the microemulsion, i.e., are not adsorbed at the water-in-oil (W/O) interface. Buffer-independentpK values were obtained after the initial pHs of the solubilized buffer solutions were corrected for the ion exchange with counter-ion of the surfactant (AOT) and for the lower polarity of the micelle-solubilized water (Brij-30 and AOT). The micelle-inducedpK shifts were in the range 1.66–2.08 units for HBBS/AOT, 1.17–2.14 units for HNBS/AOT, 0.73–1.31 units for NY/AOT, 1.06–1.40 units for HNBS/Brij-30, and 0.12–0.33 units for NY/Brij-30. The observed pK shifts are explained as due to the effect of two factors, i.e., the lower polarity of the micelle-solubilized water (relative to bulk water, AOT, and Brij-30) and electrostatic perturbation of the equilibria by the negatively charged surfactant. The smaller micellar effect on thepK of NY was attributed to the extensive electron delocalization in its conjugate base.  相似文献   

16.
Microemulsification of a vegetable oil (eucalyptus) with single and mixed surfactants (AOT and Brij-35), cosurfactant of different lipophilicities (isomers of butanol), and water were studied at different surfactant and cosurfactant mixing ratios. The phase diagrams of the quaternary systems were constructed using unfolded and folded tetrahedron, wherein the phase characteristics of different ternary systems can be underlined. The microemulsion zone was found to be dependent upon the mixing ratios of surfactant and cosurfactant; the largest microemulsion zone was formed with 1:1 (w/w) S:CS. The effects of temperature and additives (NaCl, urea, glucose, and bile salts of different concentrations) on the phase behavior were examined. The mixed microemulsion system showed temperature insensitivity, whereas the Brij-35 (single) stabilized system exhibited a smaller microemulsion zone at elevated temperature. NaCl and glucose increased the microemulsion zone up to a certain concentration, beyond which the microemulsion zones were decreased. These additives decreased the microemulsion zones as temperature was increased. The effect of urea on microemulsion zone was found to be insignificant even at the concentration 3.0 mol dm(-3). Little effect on microemulsion zone was shown by NaC (sodium cholate) at 0.25 and 0.5 mol dm(-3) at different temperatures. The conductance of the single (AOT) and mixed microemulsion system (AOT+Brij-35) depends upon the water content and mixing ratios of the surfactants, and a steep rise in conductance was observed at equal weight percentages of oil and water. Viscosities for both single (AOT) and mixed (AOT+Brij-35) surfactant systems passed through maxima at equal oil and water regions showing structural transition. The viscosities for microemulsion systems increased with increasing Brij-35 content in the AOT+Brij-35 blend. Conductances and viscosities of different monophasic compositions in the absence and presence of additives (NaCl and NaC) were measured at different temperatures. The activation energy of conduction (DeltaE(cond)( *)) and the activation enthalpy for viscous flow (DeltaH(vis)( *)) were evaluated. It was found that both DeltaE(cond)( *) and DeltaH(vis)( *) were a function of the nature of the dispersion medium. Considering the phase separation point of maximum solubility, the free energy of dissolution of water or oil (DeltaG(s)(0)) at the microdispersed state in amphiphile medium was estimated and found to be a function of surfactant composition.  相似文献   

17.
对于非离子表面活性剂聚氧乙烯月桂醚(Brij-35)/N,N-二甲基甲酰胺(DMF)/长链醇(庚醇,辛醇,壬醇,癸醇)体系,利用滴定微量量热仪测定了胶束形成过程的热功率-时间曲线.根据热力学理论,测定了临界胶束浓度和胶束形成热(ΔHmθ),计算了热力学函数(ΔGmθ和ΔSmθ).讨论了温度、醇中的碳原子数、醇的浓度与临界胶束浓度和热力学函数之间的关系.结果表明:聚氧乙烯月桂醚(Brij-35)/DMF/长链醇体系:(1)在含有相同浓度的各种醇的体系中,ΔHmθ和ΔSmθ的值随着温度的升高而增大;CMC,ΔGmθ的值随着温度的升高而降低;(2)在相同温度及相同浓度的醇体系中,CMC,ΔHmθ,ΔGmθ和ΔSmθ的值都随着醇中碳原子数的增加而降低;(3)在相同温度及相同醇的体系中,CMC,ΔHmθ,ΔSmθ和ΔGmθ的值随着醇的浓度的增加都减小.  相似文献   

18.
Spectrofluorometric measurements have been used to elaborate the self-aggregation of mixture of anioinic, sodium dodecylbenzenesulfonate (SDBS), and cationic gemini, alkanediyl-α, ω-bis (tetradecyldimethylammonium bromide) (14-4-14) with nonionic surfactant, polyoxyethylene 10 cetyl ether (Brij-56). The critical micelle concentration (cmc) of the binary mixtures has been investigated. Application of the regular solution theory (RST) to the experimental data yield the interaction parameter at mixed micelles (β), indicate an attractive interaction and reflect the synergistic behavior in both Brij-56/SDBS and Brij-56/14-4-14 systems. The micelle aggregation number (N agg) was measured using a steady state fluorescence quenching method. The N agg values of the mixed surfactant system were larger than those of pure components. The micropolarity of various combinations and the binding constants (K sv) were determined from the ratio of intensity of peaks (I 1/I 3) of pyrene fluorescence emission spectrum and its quenching, respectively.  相似文献   

19.
Water solubility enhancements of polycyclic aromatic hydrocarbons (PAHs), viz., naphthalene, anthracene and pyrene, by micellar solutions at 25 degrees C using two series of surfactants, each involving two cationic and one nonionic surfactant in their single as well as equimolar binary and ternary mixed states, were measured and compared. The first series was composed of three surfactants, benzylhexadecyldimethylammonium chloride (C16BzCl), hexadecyltrimethylammonium bromide (C16Br), and polyoxyethylene(20)mono-n-hexadecyl ether (Brij-58) with a 16-carbon (C16) hydrophobic chain; the second series consisted of dodecyltrimethylammonium bromide (C12Br), dodecylethyldimethylammonium bromide (C12EBr), and polyoxyethylene(4)mono-n-dodecyl ether (Brij-30) with a 12-carbon (C12) chain. Solubilization capacity has been quantified in terms of the molar solubilization ratio, the micelle-water partition coefficient, the first stepwise association constant between solubilizate monomer and vacant micelle, and the average number of solubilizate molecules per micelle, determined employing spectrophoto-, tensio-, and flourimetric techniques. Cationic surfactants exhibited lesser solubilization capacity than nonionics in each series of surfactants with higher efficiency in the C16 series compared to the C12 series. Increase in hydrophobicity of head groups of cationics by incorporation of ethyl or benzyl groups enhanced their solubilization capacity. The mixing effect of surfactants on mixed micelle formation and solubilization efficiency has been discussed in light of the regular solution approximation (RSA). Cationic-nonionic binary combinations showed better solubilization capacity than pure cationics, nonionics, or cationic-cationic mixtures, which, in general, showed increase with increased hydrophobicity of PAHs. Equimolar cationic-cationic-nonionic ternary surfactant systems showed lower solubilization efficiency than their binary cationic-nonionic counterparts but higher than cationic-cationic ones. In addition, use of RSA has been extended, with fair success, to predict partition coefficients of ternary surfactant systems using data of binary surfactants systems. Mixed surfactants may improve the performance of surfactant-enhanced remediation of soils and sediments by decreasing the applied surfactant level and thus remediation cost.  相似文献   

20.
The chromatographic behavior of model ions of biomedical and environmental significance was investigated by using nonionic micellar mobile phases modified with ion‐pair additives. The influence of concentrations of polyoxyethylene (23) lauryl ether and ornithine hydrochloride in the mobile phase on the retention factors of chromium (III), chromium (VI), iodide and bromide ions was studied. The possible mechanisms of retention of the mentioned ions in biopartitioning micellar chromatography with zwitter ion‐pair additives were proposed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号