首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
十四烷基芳基磺酸盐形成的分子有序组合体   总被引:1,自引:0,他引:1  
以表面张力法、碘光谱法、水增溶法和相态图法研究了自制的三种十四烷基芳基磺酸盐在不同条件下形成的分子有序组合体(胶束、反胶束和微乳液),并考察了分子结构、溶剂、无机盐和短链醇等对其的影响.结果表明:增加十四烷基芳基磺酸盐分子亲油基支化度,不利于其在水溶液或混合极性溶剂(乙二醇-水)中形成胶束而有利于其在非极性溶剂正庚烷中形成反胶束;溶剂极性的降低,促使表面活性剂溶液由胶束溶液→单体溶液→反胶束溶液转变;无机盐或短链醇的加入促进了水溶液中胶束的形成,且反离子价态数或醇烷基碳原子数越大,越有利于胶束形成;无机盐浓度的增加导致表面活性剂/正丁醇/正辛烷/NaCl/水形成的微乳液体系在一定温度下发生由WinsorI→WinsorIII→WinsorII型的转变.  相似文献   

2.
表面活性剂在非极性溶剂中形成的反胶束在催化反应、光化学、蛋白质苹取分离等方面有着广泛的应用问.这些应用与反胶束的性质有着密切的关系,而增溶水后的反胶束其形状和大小都会发生很大的变化.增溶不同水量的反胶束的微极性、酸碱性、微勤度等已有不少文献报导[2-5].一些不溶于非极性溶剂而溶于水的物质可以溶解在非极性溶剂中的反胶束核心水团中,这个现象被称为二次增溶.其中,电解质的二次增溶对于研究配体转换反应。酶催化反应问及改变反胶束内部的微环境有着十分重要的作用,Aebi和Weibush回首先研究了有水存在时N。CI在A…  相似文献   

3.
利用表面张力法, 研究了非离子表面活性剂Triton X-100和离子表面活性剂十六烷基三甲基溴化铵(CTAB)混合体系在混合极性溶剂乙二醇/水(乙二醇的体积分数分别为5%、10%和20%)中的热力学性质和胶团化行为. 结果表明, 混合体系在乙二醇水溶液中存在协同效应, 临界胶束浓度随乙二醇含量的增加而增大. 利用Rubingh和Maeda模型计算了混合物中各组分在胶团相中的组成、相互作用参数以及自由能的贡献. 在实验研究的乙二醇浓度范围内, 发现该非离子/离子混合体系在离子组分摩尔分数约为0.3时, 协同效应最强.  相似文献   

4.
通过测定表面活性剂对HCPCF吸收光谱及溶解度的影响,研究了HCPCF与表面活性剂之间的作用机理。在酸性介质中表面活性剂主要起胶束增溶作用。根据HCPCF在不同极性溶剂中的吸收光谱确定,分子形态的HCPCF是处于表面活性剂胶束的憎水碳氢链部分。在碱性介质中,在CMC以下,非离子表面活性剂可以单分子形式与HCPCF及其金属络合物形成具有一定组成比的化合物,此化合物的溶解度与非离子表面活性剂的结构有关。非离子表面活性剂可能是由其聚乙氧基的氧原子和HCPCF的尚未离解的氢之间形成氢键而反应。  相似文献   

5.
随着胶束增溶分光光度法的深入发展,发现在胶束增溶体系中,引入适量的有机溶剂或非离子表面活性剂,对体系有更强的增溶、增敏、增加稳定性等作用,即“溶剂化效应”及“混合胶束作用”。文  相似文献   

6.
离子型表面活性剂在水中和在非极性溶剂中的胶束化已成为许多研究的课题。离子型表面活性剂在水中,或在具有两个氢键的极性溶剂中(如乙二醇、氨基醇)形成普通胶束,其结构是分子的疏水端聚集在  相似文献   

7.
两性离子甜菜碱表面活性剂(SB3-12)胶束具有较好的生物相容性,由于相反电荷的极性头之间具有静电中和作用,胶束表面具有小的负电荷密度。当加入阴离子的十二烷基硫酸钠(SDS)以后,负离子SD-与SB3-12胶束极性区内层季铵正电荷的静电中和作用,能连续地调节胶束表面磺酸基的负电荷密度,这有利于对药物分子的选择性增溶和调节在生理条件下的药物的输送。等温滴定量热(ITC)研究发现SB3-12和SDS有强的协同效应,混合临界胶束浓度(CMC)和胶束化焓明显降低,并得到两者协同效应的弱静电作用机理。当模型药物分子芦丁(Rutin)与SB3-12/SDS混合胶束作用时,芦丁7位羟基的氢解离后的阴离子与SDS共同作用于SB3-12形成混合胶束。UV-Vis吸收光谱和~1H NMR谱研究发现,在SB3-12胶束中,芦丁分子的A环位于季铵阳离子附近,B环位于两个相反电荷之间的弱极性区域。在SDS胶束中,B环位于栅栏层,而A环和二糖暴露于水相侧。在混合胶束中,随着SDS摩尔分数增加,对A环的静电吸引变弱。离子表面活性剂对两性离子表面活性剂胶束表面电荷密度的调节作用,本质上是对胶束极性区域的物理及化学性质的微调,进而实现对药物的可控增溶。  相似文献   

8.
研究了烷基苯磺酸盐Gemini表面活性剂Ia与非离子表面活性剂C10E6溶液混合胶团中分子间的相互作用. 通过表面张力法测定了Ia 和C10E6不同比例不同温度下的临界胶束浓度(cmc). 结果表明, 两种表面活性剂以任何比例复配的cmc比单一表面活性剂的cmc都低, 表现出良好的协同效应. 传统型非离子表面活性剂C10E6、Gemini表面活性剂Ia及混合物的cmc都随着温度升高而降低. 而且, 任何配比的混合胶团中两种表面活性剂分子间的相互作用参数β都是负值, 这说明两种表面活性剂在混合胶团中产生了相互吸引的作用. 混合表面活性剂体系的胶团聚集数比单一Ia的大, 但比单一C10E6的小. 向Gemini表面活性剂Ia胶束中加入非离子表面活性剂C10E6会使胶束的微观极性变小.  相似文献   

9.
反胶束是两亲分子在非极性溶剂中形成的一种有序组合体,在医药、化工、采油、胶束催化及酶催化等领域中有重要应用.与胶束溶液相比,人们对反胶束的形成与结构的了解至今仍不充分.特别是对于由混合表面活性剂形成的反胶束的研究几乎无人涉及.本文采用动态光散射、电导及荧光光谱等手段对阴离子表面活性剂AOT与非离子表面活性剂形成的混合反胶束进行了研究,旨在探讨利用表面活性剂的复配来调节和控制反胶束的结构和性能.亚实验部分二异辛基磺化琉璃酸钠(AOT,Sigma公司);Brij30为含4个氧乙烯基(EO基)的十二碳醇(AcrosOrgani…  相似文献   

10.
雷声  张晶  黄建滨 《物理化学学报》2007,23(11):1657-1661
采用表面张力测定法和核磁共振谱等方法研究了阴离子表面活性剂十二烷基硫酸钠(SDS)在水溶性室温离子液体[BMim]BF4/水混合溶剂中的表面性质及聚集行为, 发现极少量[BMim]BF4的介入就可以显著降低SDS的临界胶束浓度, 提高体系的表面活性; 且[BMim]BF4在混合溶剂中所占的摩尔分数(x1)在一定范围内(0相似文献   

11.
The aqueous solubilization of the organoselenium compound viz., 1,2-bis(bis(4-chlorophenyl)methyl)diselane [(ClC(6)H(4))(2)CHSe](2) has been investigated experimentally in micellar solutions of two cationic (hexadecyltrimethylammonium bromide, CTAB, hexadecyltrimethylammonium chloride, CTAC) and one nonionic (polyoxyethylene(20)mono-n-hexadecyl ether, Brij 58) surfactants possessing the same hydrocarbon "tail" length and in their single as well as equimolar binary and ternary mixed states. Solubilization capacity determined with spectrophotometry and tensiometry has been quantified in terms of molar solubilization ratio and micelle-water partition coefficient. FTIR, UV-vis, fluorescence and zeta potential measurements have been utilized to ascertain the interaction of organochalcogen compound with surfactants. Equimolar cationic-nonionic surfactant combinations show better solubilization capacity than pure cationics or nonionics, whereas equimolar cationic-cationic-nonionic ternary surfactant systems exhibit intermediate solubilization efficiency between their single and binary counterparts. Locus of solubilization of [(ClC(6)H(4))(2)CHSe](2) in different micellar solutions was probed by UV-visible spectroscopy. The investigation has presented precious information for the preference of mixed surfactants for solubilizing water-insoluble compounds. Indeed the solubilization aptitude of these surfactants is not merely related to molar capacity. The results furnish adequate support to justify comprehensive exploration of the surfactant properties that influence solubilization.  相似文献   

12.
Micellar-enhanced ultrafiltration (MEUF) was used to remove cadmium ions from wastewater efficiently. In this study the nonionic surfactants polyoxyethyleneglycol dodecyl ether (Brij35) and polyoxyethylene octyl phenyl ether (TritonX-100) were for micellar-enhanced ultrafiltration to lower the dosage of the anionic surfactant sodium dodecyl sulfate (SDS). The surfactant critical micelle concentration (CMC) and the degree of micelle counterion binding were investigated. The effects of nonionic surfactant addition on the efficiency of cadmium removal, the residual quantities of surfactant, the permeate flux and the secondary membrane resistance were investigated. A comparison between MEUF with SDS and MEUF with mixed anionic–nonionic surfactants was undertaken. The results show that the addition of Brij35 or TritonX-100 reduced the CMC of SDS and the degree of counterion binding for the micelles. Due to these variations the Cd2+ rejection efficiency was at a maximum when the Brij35:SDS and the TritonX-100:SDS molar ratio was 0.5. The Cd2+ rejection efficiency in MEUF with SDS is higher than for MEUF with mixed surfactants when the total dose of surfactant is constant. The permeate flux of MEUF with SDS is higher than that for MEUF with mixed surfactants while the secondary resistance of MEUF with SDS is less than that of MEUF with mixed surfactants.  相似文献   

13.
The effect of cationic (cetyltrimethylammonium bromide, CTAB), anionic (sodium lauryl sulfate, NaLS), and nonionic (Brij‐35) surfactants on the rate of oxidation of some reducing sugars (xylose, glucose, and fructose) by alkaline hexacyanoferrate(III) has been studied in the temperature range from 35 to 50°C. The rate of oxidation is strongly inhibited in the presence of surfactant. The inhibition effect of surfactant on the rate of reaction has been observed below critical micelle concentration (CMC) of CTAB. In case of NaLS and Brij‐35, the inhibition effect was above CMC, at which the surfactant abruptly associates to form micelle. The kinetic data have been accounted for by the combination of surfactant molecule(s) with a substrate molecule in case of CTAB and distribution of substrate into micellar and aqueous pseudophase in case of NaLS and Brij‐35. The binding parameters (binding constants, partition coefficients, and free‐energy transfer from water to micelle) in case of NaLS and Brij‐35 have been evaluated with the help of Menger and Portnoy model reported for micellar inhibition. © 2007 Wiley Periodicals, Inc. Int J Chem Kinet 39: 595–604, 2007  相似文献   

14.
Electron spin resonance spectroscopy (ESR) of the nitroxide labelled fatty acid probes (5-, 16-doxyl stearic acid) was used to monitor the micelle microviscosity of three surfactants at various concentrations in aqueous solution: sodium dodecyl sulphate (SDS), dodecyltrimethylammonium bromide (DTAB) and cetyltrimethylammonium bromide (CTAB). At low surfactant concentration, there is no micelle, the ESR probe is dissolved in water/surfactant homogeneous phase and gives his microviscosity. At higher surfactant concentration, an abrupt increase in microviscosity indicates the apparition of micelles and, the solubilization of the probes in micelles. The microviscosity of the three surfactants, in a large surfactant range, was obtained as well as the critical micelle concentration (CMC). The microviscosity increased slightly with the increase in surfactant concentration. Phosphate buffer lowered the CMC value and generally increased the microviscosity.  相似文献   

15.
Simulations based on dissipative particle dynamics are performed to investigate the solubilization mechanism of vesicles by surfactants. Surfactants tend to partition themselves between vesicle and the bulk solution. It is found that only surfactants with suitable hydrophobicity are able to solubilize vesicles by forming small mixed micelles. Surfactants with inadequate hydrophobicity tend to stay in the bulk solution and only a few of them enter into the vesicle. Consequently, the vesicle structure remains intact for all surfactant concentrations studied. On the contrary, surfactants with excessive hydrophobicity are inclined to incorporate with the vesicle and thus the vesicle size continues to grow as the surfactant concentration increases. Instead of forming discrete mixed micelles, lipid and surfactant are associated into large aggregates taking the shapes of cylinders, donuts, bilayers, etc. For addition of surfactant with moderate hydrophobicity, perforated vesicles are observed before the formation of mixed micelles and thus the solubilization mechanism is more intricate than the well-known three-stage hypothesis. As the apparent critical micellar concentration (φ(s,v)(a,CMC)) is attained, pure surfactant micelles form and the vesicle deforms because the distribution of surfactant within the bilayer is no longer uniform. When the surfactant concentration reaches φ(s,v)(p), the vesicle perforates. The extent of perforation grows with increasing surfactant concentration. The solubilization process begins at φ(s,v) (sol), and lipids leave the vesicle and join surfactant micelles to form mixed micelles. Eventually, total collapse of the vesicle is observed. In general, one has φ(s,v)(a,CMC)≤φ(s,v)(p)≤φ(s,v)(sol).  相似文献   

16.
Water solubility enhancements of polycyclic aromatic hydrocarbons (PAHs), viz., naphthalene, anthracene and pyrene, by micellar solutions at 25 degrees C using two series of surfactants, each involving two cationic and one nonionic surfactant in their single as well as equimolar binary and ternary mixed states, were measured and compared. The first series was composed of three surfactants, benzylhexadecyldimethylammonium chloride (C16BzCl), hexadecyltrimethylammonium bromide (C16Br), and polyoxyethylene(20)mono-n-hexadecyl ether (Brij-58) with a 16-carbon (C16) hydrophobic chain; the second series consisted of dodecyltrimethylammonium bromide (C12Br), dodecylethyldimethylammonium bromide (C12EBr), and polyoxyethylene(4)mono-n-dodecyl ether (Brij-30) with a 12-carbon (C12) chain. Solubilization capacity has been quantified in terms of the molar solubilization ratio, the micelle-water partition coefficient, the first stepwise association constant between solubilizate monomer and vacant micelle, and the average number of solubilizate molecules per micelle, determined employing spectrophoto-, tensio-, and flourimetric techniques. Cationic surfactants exhibited lesser solubilization capacity than nonionics in each series of surfactants with higher efficiency in the C16 series compared to the C12 series. Increase in hydrophobicity of head groups of cationics by incorporation of ethyl or benzyl groups enhanced their solubilization capacity. The mixing effect of surfactants on mixed micelle formation and solubilization efficiency has been discussed in light of the regular solution approximation (RSA). Cationic-nonionic binary combinations showed better solubilization capacity than pure cationics, nonionics, or cationic-cationic mixtures, which, in general, showed increase with increased hydrophobicity of PAHs. Equimolar cationic-cationic-nonionic ternary surfactant systems showed lower solubilization efficiency than their binary cationic-nonionic counterparts but higher than cationic-cationic ones. In addition, use of RSA has been extended, with fair success, to predict partition coefficients of ternary surfactant systems using data of binary surfactants systems. Mixed surfactants may improve the performance of surfactant-enhanced remediation of soils and sediments by decreasing the applied surfactant level and thus remediation cost.  相似文献   

17.
A mixed micellar liquid chromatography (MLC) method, the mobile phase consisting of anionic surfactant SDS and nonionic surfactant Brij35, was firstly developed for the separation and determination of six structure-like matrine-type alkaloids, including matrine, oxymatrine, sophocarpine, oxysophocarpine, sophoridine, and oxysophoridine. The factors influencing the resolution of the six alkaloids were systematically investigated and optimized, including the micellar composition and concentration, column temperature, the type and amount of organic solvent, and the pH values in the mobile phases. Under the optimized separation conditions, the six matrine-type alkaloids could be easily isocratically eluted with a baseline separation within 22 min. Under the designated conditions (SDS concentration from 10 to 50 mM, Brij35 from 5 to 30 mM, pH 3 and 5% 1-propanol), the hydrophobic selectivity was negatively correlated with the concentration of Brij35 but not with SDS. The functional group selectivity of the carbonyl group, double bond, and diastereomers, all decreased with the increase in percentage of SDS in the mixed micellar phase, because the strong electrostatic force masks other molecular forces which can discriminate the retention of the analytes. Therefore, such a combination in surfactants of MLC is a powerful strategy to increase the selectivity by adjusting the balance among the various molecular interaction forces influencing analytes' retention. Finally, the developed method was successfully used to separate and determine the contents of main alkaloids in Sophora medicinal plants, S. flavescens Ait. In summary, the mixed MLC is a valuable approach to separate and determine the structure-like multi-component natural samples.  相似文献   

18.
Solubilization of water and aqueous NaCl solutions in mixed reverse micellar systems of anionic surfactant AOT and nonionic surfactants in n-heptane was studied. It was found that the maximum solubilization capacity of water was higher in the presence of certain concentrations of NaCl electrolyte, and these concentrations increased with the increase of nonionic surfactant content and their EO chain length. Soluibilization capacity was enhanced by mixing AOT with nonionic surfactants. The observed phenomena were interpreted in terms of the stability of the interfacial film of reverse micellar microdroplet and the packing parameter of the surfactant that formed mixed reverse micelles.  相似文献   

19.
The effect of glycerol on the micellization of the cationic surfactant cetyltrimethylammonium bromide (CTAB) and of the ethoxylated nonionic surfactant Brij 58 has been investigated by various experimental techniques. For both surfactants the critical micellar concentration (cmc), determined by surface tension measurements, is almost unaffected by the presence of glycerol in the mixture; only at high glycerol concentrations (>/=20% w/w) does the cmc significantly increase. The area per surfactant molecule at the air-solution interface, A, increases with increasing glycerol weight percentage, w(g). Fluorescence quenching measurements indicate that the presence of glycerol induces a lowering of the aggregation number of both surfactants. The glycerol intradiffusion coefficient has been measured by the pulsed-gradient spin-echo NMR technique as a function of glycerol content at constant surfactant concentration. It is almost unaffected by the presence of the surfactants, indicating that no direct glycerol-surfactant interaction occurs in the mixture. The surfactant intradiffusion coefficient has been also measured. In the case of CTAB, it increases with increasing glycerol concentration, a reflection of the decreased aggregation number. For Brij 58, in spite of the lowering of the aggregation number, the surfactant intradiffusion coefficient decreases with increasing glycerol concentration, suggesting an increase of the intermicellar interaction. The experimental evidence shows that for both surfactants the micellization is affected by the presence of glycerol through an indirect, solvent-mediated mechanism. In the case of CTAB, the main effect of glycerol is a lowering of the medium dielectric constant, which enhances the electrostatic interactions in solution. In the case of Brij 58, the results can be interpreted in terms of a salting-out effect according to which glycerol competes with the surfactant for water molecules, causing a dehydration of the surfactant ethoxylic headgroup.  相似文献   

20.
The solubility of an anesthetic drug, LIDOCAINE, in water was investigated in the presence of ionic, nonionic and zwitterionic surfactants at 25 °C, and the solubility was found to increase linearly with the surfactant concentration. The molar solubilization ratio, R m,s, and Gibbs free energy, DGso\Delta G_{\mathrm{s}}^{\mathrm{o}} values for nonionic surfactants fall in the order DDAO > Brij 35 > Brij 30, whereas for ionic and zwitterionic surfactants the order is DDAPS > DTAB > SDS. The high negative values of the Gibbs energies in the cases of DDAO and DDAPS prove them to be better surfactants for solubilizing this drug as compared to the other surfactants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号