首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
We have successfully prepared monodispersed positively thermoresponsive core-shell hydrogel microspheres with poly(acrylamide-co-styrene) [P(AAM-co-St)] cores and IPN(interpenetrating polymer network)-based shells composed of poly(acrylamide)/poly(acrylic acid). The submicron-sized monodispersed P(AAM-co-St) core seeds were prepared by using a surfactant-free emulsion polymerization method, and the IPN-based shell layers were fabricated onto the core seeds by using a method of sequential IPN synthesis. Effects of reaction time and reaction temperature during preparation of IPN on the particle size, monodispersity, and thermoresponsive characteristics of microspheres were investigated. The results show that the sizes of particles with IPN shell layer are smaller than that of seeds, and the change of monodispersity among them is not obvious and the monodispersity of particles prepared under higher reaction temperature is higher than that of seeds and those particles prepared under lower reaction temperature. With increasing reaction time, thermoresponsive characteristics of microspheres increases. While thermoresponsive characteristics of microspheres decreases sharply with increasing reaction temperature. The results display preparation of IPN-structured microspheres is so careful to need longer reaction time and lower reaction temperature.  相似文献   

2.
Novel interpenetrating network (IPN) hydrogels (PNIPAAm/clay/PAAm hydrogels) based on poly(N‐isopropylacrylamide) (PNIPAAm) crosslinked by inorganic clay and poly(acrylamide) (PAAm) crosslinked by organic crosslinker were prepared in situ by ultraviolet (UV) irradiation polymerization. The effects of clay content on temperature dependence of equilibrium swelling ratio, deswelling behavior, thermal behavior, and the interior morphology of resultant IPN hydrogels were investigated with the help of Fourier transform infrared spectroscopy, differential scanning calorimeter (DSC), scanning electron microscope (SEM). Study on temperature dependence of equilibrium swelling ratio showed that all IPN hydrogels exhibited temperature‐sensitivity. DSC further revealed that the temperature‐sensitivity was weakened with increasing amount of clay. Study on deswelling behavior revealed that IPN hydrogels had much faster response rate when comparing with PNIPAAm/clay hydrogels, and the response rate of IPN hydrogels could be controlled by clay content. SEM revealed that there existed difference in the interior morphology of IPN hydrogels between 20 [below lower critical solution temperature (LCST)] and 50 °C (above LCST), and this difference would become obvious with a decrease in clay content. For the standpoint of applications, oscillating swelling/deswelling behavior was investigated to determine whether properties of IPN hydrogels would be stable for potential applications. Bovine serum albumin (BSA) was used as model drug for in vitro experiment, the release data suggested that the controlled drug release could be achieved by modulating clay content. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 96–106, 2009  相似文献   

3.
A novel poly(N‐isopropylacrylamide) (PNIPA)/PNIPA interpenetrating polymer network (IPN) was synthesized and characterized. In comparison with conventional PNIPA hydrogels, the shrinking rate of the IPN hydrogel increased when gels, swollen at 20 °C, were immersed in 50 °C water. The phase‐transition temperature of the IPN gel remained unchangeable because of the same chemical constituent in the PNIPA gel. The reswelling kinetics were slower than those of the PNIPA hydrogel because of the higher crosslinking density of the IPN hydrogel. The IPN hydrogel had better mechanical strength because of its higher crosslinking density and polymer volume fraction. The release behavior of 5‐fluorouracil (5‐Fu) from the IPN hydrogel showed that, at a lower temperature, the release of 5‐Fu was controlled by the diffusion of water molecules in the gel network. At a higher temperature, 5‐Fu inside the gel could not diffuse into the medium after a burst release caused by the release of the drug on the surface of the gel. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1249–1254, 2004  相似文献   

4.
The phenomenon of forced compatibilization has been studied in poly(methyl acrylate)-polystyrene PMA-i-PS sequential interpenetrating polymer networks, IPNs, using differential scanning calorimetry. Both networks in the IPN were prepared using the same amount of ethylene glycol dimethacrylate, EGDMA, as crosslinking agent. The samples were subjected to thermal treatments which included annealing at different ageing temperatures T a, for 300 min. From the DSC curves, recorded on heating the enthalpy loss during the isothermal annealing, Δh a was calculated. The dependence of Dh a with the annealing temperature was used to define the temperature interval in which the conformational mobility is significant. The comparison of the Δh a(T a) curves obtained in an IPN and the results obtained with the pure component homo-networks with the same crosslinking density reveal some details of the miscibility of the IPN. In the case of the IPN crosslinked with 10% EGDMA, two peaks are apparent in the Δh a(T a) curve, but the high-temperature peak is shifted towards lower temperatures compared to that of the polystyrene network while the low-temperature one is nearly at the same temperature than the one of the poly(methyl acrylate) homonetwork. This means that compatibilization is not complete and phase separation still exists even at this high crosslinking density. The different behaviour of the high and low temperature transitions can be explained by the dynamic heterogeneity of the sample, i.e. by the different length of cooperativity of the conformational rearrangements of PMA and PS domains at any temperature. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Temperature-sensitive filled poly(N-isopropylacrylamide) (PNIPAAm) gel beads with diameters in the range of millimeters were prepared using the alginate technique. The polymerization and cross-linking reaction of NIPAAm in the presence of inorganic filling particles was performed in spherical networks of Ca-alginate forming interpenetrating networks (IPN). Thermo-sensitive gel beads could be obtained by washing these IPN with EDTA solution. The PNIPAAm gel beads were analyzed by optical methods to observe there swollen diameter in dependence on the temperature. The diameters of the swollen gel beads were in the range of 0.1 - 2 mm. The influence of the monomer to cross-linker ratio (MCR) and the filling materials (ferrofluid, BaTiO3, TiO2, and Ni,) were studied. The phase transition temperature (Tpt) was only weakly influenced by the MCR and the filling material remaining at around 34°C.  相似文献   

6.
采用分步法用电子加速器辐射合成了聚丙烯酰胺(PAAm)/聚异丙基丙烯酰胺(PNIPAAm)互穿网络水凝胶,并考察了温度、pH值、离子强度对其溶胀性能的影响.研究表明:互穿水凝胶具有温度敏感性,且其体积相变与互穿网络中PAAm和PNIPAAm含量有关,随着网络中PAAm含量的增加水凝胶的体积相变趋于平缓,可以通过改变PAAm和PNIPAAm的组成比来控制水凝胶的体积相变行为.此外,互穿水凝胶还具有pH敏感性和一定的抗盐性.  相似文献   

7.
The macroporous polydivinylbenzene/poly(methyl acrylate) interpenetrating polymer network (PDVB/PMA IPN) was prepared by the sequential suspension polymerization method, and was modified to be hydrophobic–hydrophilic macroporous polydivinylbenzene/poly (sodium acrylate) IPN (PDVB/PNaA IPN) by converting the PMA to PNaA under the condition of base. The effects of different mass ratio of the two networks and different cross‐linking degree of the second network on the pore structure and adsorption capacity of PDVB/PNaA IPN resin were studied. The PDVB/PNaA IPN resin whose adsorption quantity is the biggest was chosen to study further. The pore structure, the weak acid exchange capacity, the water retention capacity, and the swelling ability of PDVB/PNaA IPN resin were measured. The study focused on the adsorption isotherms of berberine at different temperatures. Isosteric adsorption enthalpy, adsorption Gibbs free energies can be calculated according to thermodynamic functions. The results show that the saturated adsorption quantity of berberine is up to 109.4 mg ml?1 (wet resin) by the way of dynamic adsorption and desorption experiment. The resin could be reused by the mixture with 0.5% sodium chloride and 80% ethanol. On the one hand the hydrophobic PDVB in the PDVB/PNaA IPN resin has the ability of adsorption using π–π interaction, and on the other hand the hydrophilic PNaA in the PDVB/PNaA IPN resin has the ability of adsorption using ion exchange interaction. An important conclusion can be drawn that the PDVB/PNaA IPN resin has a promising application prospect in extracting and separating quaternary ammonium type alkaloids such as berberine. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Semi‐interpenetrating network (semi‐IPN) hydrogels, composed of poly(aspartic acid) (PAsp) and poly(acrylic acid) (PAAc) with various ratios of PAsp to AAc, were prepared. In this work, swelling kinetics was investigated through calculating some parameters. The swelling ratios were measured at room temperature, using urea solutions as liquids to be absorbed. Compared to in deionized water, the hydrogels showed larger swelling ratios in urea solutions, which might be attributed to the chemical composition of urea. The equilibrium swelling ratio could achieve 600 g/g, and the equilibrium urea/water contents were more than 0.99. The diffusion exponents were between 0.5 and 0.7, suggesting that the solvent transport into the hydrogel was dominated by both diffusion and relaxation controlled systems. Therefore, the PAsp/PAAc semi‐IPN hydrogels were appropriate to carry substances in a urea/water environment for pharmaceutical, agricultural, environmental, and biomedical applications. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 666–671, 2010  相似文献   

9.
Interpenetrating polymer network (IPN) strategy was developed to fabricate novel hydrogels composed of cellulose and poly(N‐isopropylacrylamide) (PNIPAAm) with high mechanical strength and adjustable thermosensitivity. Cellulose hydrogels were prepared by chemically cross‐linking cellulose in NaOH/urea aqueous solution, which were employed as the first network. The second network was subsequently obtained by in situ polymerization/cross‐linking of N‐isopropylacrylamide in the cellulose hydrogels. The results from FTIR and solid 13C NMR indicated that the two networks co‐existed in the IPN hydrogels, which exhibited uniform porous structure, as a result of good compatibility. The mechanical and swelling properties of IPN hydrogels were strongly dependent on the weight ratio of two networks. Their temperature‐sensitive behaviors and deswelling kinetics were also discussed. This work created double network hydrogels, which combined the advantages of natural polymer and synthesized PNIPAAm collectively in one system, leading to the controllable temperature response and improvement in the physical properties. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
The permittivity and loss of poly(methyl methacrylate) (PMMA) network crosslinked with trimethylol-1,1,1 propane and its interpenetrating network polymers with 10, 34, and 50% (by weight) poly(urethane) have been measured from 100 to 400 K over a frequency range of 12 to 1 × 105 Hz. Two relaxation processes, γ and β, are observed in the PMMA network, and a third process, αpu, in the 10% poly(urethane) IPN. At higher concentrations of poly(urethane), the γ process is removed from the temperature-frequency range of our study. Crosslinking in pure PMMA slows the segmental motions involved in the β process and raises its activation energy. Physical aging of the 10 wt% poly(urethane)-PMMA causes its γ process to become indiscernible and the αpu process to become better resolved. A discussion of these results in terms of local regions of segmental motion is provided.  相似文献   

11.
Dynamic mechanical properties have been determined in atactic poly(p-biphenyl acrylate) (PPBA) and poly(p-cyclohexylphenyl acrylate) (PPCPA) in the temperature range from 80 to 540°K at frequencies in the range 103–104 Hz. The general behavior of the dynamic elastic modulus as a function of temperature shows a transition region from the glassy state at about 390°K for both polymers, a plastic region extending over a temperature interval of about 100°K, and another transition to the melt situated at 540 and 480°K for PPBA and PPCPA, respectively. The experimental data show that the mechanical behavior of both polymers strongly resembles that of crystalline polymers. The loss spectrum of PPBA shows the presence of several important maxima: one corresponding to the melting point, characterized by a very rapid increase of losses with increasing temperature (α′ relaxation), one in the glass-temperature range, characterized by a rather broad peak (α′ relaxation), and others below Tg, associated with secondary relaxation effects. The analysis of the different transitions and relaxations indicates that some of these processes can be ascribed to motions taking place in the ordered regions of the polymer. PPCPA shows a similar loss pattern; however, owing to the lower melting point the α maximum is partially submerged in the α′ relaxation associated with the melting process. Of particular interest is the γ process in the glassy state of this polymer, caused by the chair–chair transition of the cyclohexyl rings. The limited intensity of this relaxation as compared with that of most polymers containing cyclohexyl side groups, has been interpreted as due to the high ΔF associated with such a transition for cyclohexyl rings linked to phenylene groups. This leads to some interesting conclusions about the conformation of the side groups in PPCPA.  相似文献   

12.
In order to investigate the influence of hydrophobic moieties formed by poly(N-isopropylacrylamide) (PNIPAm) in a hydrogel matrix on the release behavior of the hydrogel, a series of poly(N-isopropylacrylamide) (PNIPAm)-modified poly(2-hydroxyethyl acrylate-co-2-hydroxyethyl 2-hydroxyethyl methacrylate) (P(HEA-co-HEMA)) via interpenetrating polymer networks (IPNs) were prepared by a sequential UV solution polymerization. Interestingly, it was found that P(HEA-co-HEMA)/PNIPAm IPN indicated a single glass transition temperature (T(g)) and the T(g)s of the IPNs increased with an increase in the PNIPAm component. This phenomenon may be attributed to hydrogen bonding between the two polymer networks, but the hydrogen bonding exerts less influence on the swelling behavior of the IPNs, due to the fact that IPNs can respond to changes in temperature like PNIPAm. Using 2-[(diphenylmethyl)sulphiny]acetamide (modafinil, MOD) and p-hydroxybenzoic acid (HBA) as model drug compounds, the release behavior of the IPNs was studied at body temperature, and it was found that the presence of PNIPAm could retard drug release regardless of the solubility of the drugs. Release profiles of HBA from the IPNs and their component samples as a function of time at 37 degrees C.  相似文献   

13.
ABSTRACT

An attempt was made to enhance the water-sorption capacity of polymers of 2-hydroxyethyl methacrylate (HEMA) by preparing its semi-interpenetrating polymer network (IPN) with a hydrophilic polymer such as poly(ethylene glycol) (PEG). The effects of various factors, such as history of the polymer sample, chemical architecture of the IPN, presence of salt ions in the swelling medium, and temperature of the swelling medium, were investigated on the water sorption kinetics of the IPNs. The IPN was characterized by IR spectral analysis and various structural parameters, such as molecular weight between crosslinks (Mc), crosslink density (q) and number of elastically effective chains (Ve), were evaluated. The IPNs were also assessed for their antithrombogenic potential.  相似文献   

14.
A series of magnetic semi‐interpenetrating polymer network (semi‐IPN) hydrogels was prepared in one‐stage strategy composed of linear poly(vinyl alcohol) (PVA) chains and magnetic γ‐Fe2O3 nanoparticles entrapped within the cross‐linked poly(acrylamide‐co‐vinylimidazole) (poly(AAm‐co‐VI)) network. The influence of PVA, weight ratio of AAm:VI, γ‐Fe2O3, and MBA on the swelling properties of the obtained nanocomposite hydrogels was evaluated. The prepared magnetic semi‐IPN hydrogels were fully characterized and used as absorbent for removal of Pb(II) and Cd(II) from water. Factors that influence the metal ion adsorption such as solution pH, contact time, initial metal ion concentration, and temperature were studied in details. The experimental results were reliably described by Langmuir adsorption isotherms. The adsorption capacity of semi‐IPN nanocomposite for Pb(II) and Cd(II) were175.80 and 149.76 mg g?1, respectively. The kinetic experimental data indicated that the chemical sorption is the rate‐determining step. According to thermodynamic studies, Pb(II) and Cd(II) adsorption on the hydrogels was endothermic and also chemical in nature. The prepared magnetic PVA/poly(AAm‐co‐VI) semi‐IPN hydrogels could be employed as efficient and low‐cost adsorbents of heavy metal ions from water. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Simultaneous IPNs of poly(dimethyl siloxane-urethane) (PDMSU)/poly(methyl methacrylate) (PMMA) and related isomers have been prepared by using new oligomers of bis(β-hydroxyethoxymethyl)poly(dimethyl siloxane)s (PDMS diols) and new crosslinkers biuret triisocyanate (BTI) and tris(β-hydroxylethoxymethyl dimethylsiloxy) phenylsilane (Si-triol). Their phase morphology have been characterized by DSC and SEM. The SEM phase domain size is decreased by increasing crosslink density of the PDMSU network. A single phase IPN of PDMSU/PMMA can be made at an Mc = 1000 and 80 wt % of PDMSU. All of the pseudo- or semi-IPNs and blends of PDMSU and PMMA were phase separated with phase domain sizes ranging from 0.2 to several micrometers. The full IPNs of PDMSU/PMMA have better thermal resistance compared to the blends of linear PDMSU and linear PMMA. © 1993 John Wiley & Sons, Inc.  相似文献   

16.
Isochronal measurements of dielectric constant and loss are made for poly(isobutyl methacrylate) (PiBMA), poly(n-butyl methacrylate) (PnBMA), poly(isopropyl methacrylate) (PiBMA), and poly(4-methylpentene-1) (P4MP1) at temperatures ranging from 4°K to 250°K. Loss peaks are found around 120°K (10–100 Hz) for PiBMA, PnBMA, and P4MP1. By comparing the activation energy with the calculated potential barrier for the internal rotation of alkyl group in the side chain, the motion responsible for the 120°K peak is concluded to be essentially the rotation of the isopropyl group as a whole for PiBMA and P4MP1 but, for PnBMA, the rotation of n-propyl group accompanied by the rotation of the end ethyl group. Multiple paths of internal rotation are involved with the 120°K peaks of PiBMA and, in particular, PnBMA, which explain differences between PiBMA and PnBMA in the broadness and the temperature location of the 120°K peak. The 120°K peak is in general assigned to a side chain including a sequence? O? C? C? C or ? C? C? C? C. PiPMA without this sequence in the side chain does not show the 120°K peak, but it exhibits the 50°K peak (1 kHz) like poly(ethyl methacrylate). The 50°K peak is assigned to the rotation of ethyl or isopropyl group attached to COO group. Poly-L-valine in which the isopropyl group is directly attached to carbon does not have the 50°K peak. An additional loss peak at 20°K (1 kHz) for P4MP1 is also discussed on the basis of the calculated potential.  相似文献   

17.
In this study, a novel classical thermo‐ and salt‐sensitive semi‐interpenetrating polymer network (semi‐IPN) hydrogel composed of poly(N,N‐diethylacrylamide) (PDEAm) and κ‐carrageenan (KC) was synthesized by free radical polymerization. The structure of the hydrogels was studied by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). FTIR and SEM revealed that the semi‐IPN hydrogels possessed the structure of H‐bonds and larger number of pores in the network. Compared to the PDEAm hydrogel, the prepared semi‐IPN hydrogels exhibited a much faster response rate to temperature changes and had larger equilibrium swelling ratios at temperatures below the lower critical solution temperature (LCST). The salt‐sensitive behavior of the semi‐IPN hydrogels was dependent on the content of KC. In addition, during the reswelling process, semi‐IPN hydrogels showed a non‐sigmoidal swelling pattern. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
In this work, poly((PMMA‐b‐VI)‐co‐AA) (MMA = methyl methacrylate; VI = 1‐vinylimidazole; AA = acrylic acid) hydrogels and poly((PMMA‐b‐VI)‐co‐AA)/TPU (TPU = thermoplastic polyurethane) IPN (interpenetrating polymer networks) hydrogels have been fabricated via versatile infrared laser ignited frontal polymerization by using poly(PMMA‐b‐VI) macromonomer as the mononer. The frontal velocity and Tmax (the highest temperature that the laser beam detected at a fixed point) can be adjusted by varying monomer weight ratios, the concentration of BPO (BPO = benzoyl peroxide) and the amount of TPU. Moreover, the addition of TPU enhances the reactant viscosity to suppress the “fingering” of frontal polymerization (FP) and decrease Tmax of the reaction, providing a new inert carrier (TPU) to assist FP. Through the characterization of Fourier transform‐infrared spectroscopy (FT‐IR), scanning electron microscope (SEM), and differential scanning calorimetry (DSC), the desired structure can be proved to exist in the IPN hydrogels. Furthermore, poly((PMMA‐b‐VI)‐co‐AA)/TPU IPN hydrogels possesses more excellent mechanical behaviors than hydrogels without IPN structure. Besides, the poly((PMMA‐b‐VI)‐co‐AA) hydrogels present splendid sensitive properties toward substances of different flavor including sourness (CA, citric acid or GA, gluconic acid), umami (SG, sodium glutamate), saltiness (SC, sodium chloride), sweetness (GLU, glucose), enabling their potential as artificial tongue‐like sensing materials. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1210–1221  相似文献   

19.
肖谷清  王姣亮  龙立平  蔡玲 《应用化学》2010,27(12):1451-1456
采用分步悬浮聚合法制备了聚二乙烯基苯/聚丙烯酸甲酯(PDVB/PMA)大孔互穿聚合物网络,将其中的聚丙烯酸甲酯转化为聚丙烯酸,得到具有疏水/亲水性能的聚二乙烯基苯/聚丙烯酸(PDVB/PAA)大孔互穿聚合物网络(IPN),研究了这类疏水/亲水大孔PDVB/PAA IPN对苯胺的吸附热力学和吸附动力学,测定了该树脂的孔结构、含水量、弱酸交换量和溶胀性能;测定了该树脂对苯胺在不同温度下的吸附等温线,利用热力学函数关系计算了吸附焓、自由能和熵。 红外光谱显示,成功合成了疏水/亲水PDVB/PAA IPN,与PDVB、PDVB/PMA IPN树脂相比,其BET表面积以及孔容均减小,含水量为62.73%,弱酸交换量为1.91 mmol/g;对苯胺的吸附为放热、自发的过程;溶胀实验、静态解吸实验表明,PDVB/PAA IPN树脂中疏水性的PDVB网具有疏水作用吸附能力,亲水性的PAA网具有氢键作用吸附能力。 对苯胺的吸附在90 min时即可达到吸附平衡,树脂吸附苯胺符合一级速率方程,吸附速率主要受颗粒内扩散的控制,同时还受液膜扩散的影响,吸附动力学可采用HSDM模型描述。  相似文献   

20.
Crystallization behavior of blends of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly(1,2-propandiolcarbonate) (PR(CO2)) has been investigated by polarized light microscopy (PLM). The spherulite growth rates (SGR) of all blends were faster than that of pure PHBV, and the spherulite growth rates of PHBV in the PHBV/PR(CO2) blends reduced with increasing PR(CO2) weight fraction. There are two melting peaks in both the pure PHBV and the PHBV/PR(CO2) blends. The melting peak of PHBV/PR(CO2) blends was reduced by lower temperature about 20K as compared to PHBV and the higher temperature melting peak was increased by about 10K in the blends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号