首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermo-sensitive porous hydrogels composed of interpenetrated networks (IPN) of alginate-Ca2+ and PNIPAAm have been obtained. The hydrogels were prepared by cross-linking alginate-Na+ with Ca2+ ions inside PNIPAAm networks. Compressive tests and scanning electron microscopy were used to evaluate gel strength and pore morphology, respectively. IPN hydrogels displayed two distinct pore morphologies under thermal stimuli. Below 30-35 °C, the LCST of PNIPAAm in water, IPN hydrogels were highly porous. The pore size of hydrogel heated above LCST became progressively smaller. Alginate-Ca2+ and PNIPAAm hydrogels, used as references, did not present such behaviour, indicating that the porous effect is due to IPN hydrogel. It was verified that higher strength is achieved when the hydrogel presents small pore size and the temperature is increased. It is suggested that at temperatures above LCST, the PNIPAAm chains shrink and pull the alginate-Ca2+ networks back. During shrinking, the polymer chains occupy the open spaces (pores from which water is expelled), and therefore, the hydrogel becomes less deformable when subjected to compressive stress. The results presented in this work indicate that the mechanical properties as well as the pore morphologies of these IPN hydrogels can be tailored by thermal stimulus.  相似文献   

2.
Poly(N‐acryloyl glycinamide) (PNAGA)/poly(N‐isopropyl acrylamide) (PNIPAAm) interpenetrating network (IPN) hydrogels were made by UV‐light initiated radical polymerization in two‐steps. The IPN hydrogels showed a double thermoresponsive behavior due to the combination of PNIPAAm (thermophobic) and PNAGA (thermophilic) networks. Increasing the content of the thermophobic PNIPAAm network leads to a change from a broad thermophilic volume phase transition temperature of PNAGA to a thermophilic–thermophobic‐type dual transition for the prepared IPN. Due to the double thermoresponsive character of the IPN gels, the mechanical properties are dependent upon temperature as demonstrated by performing tensile tests in water at 15 and 50 °C. Furthermore, the IPN hydrogels were characterized using turbidity measurements, SEM, and the determination of the equilibrium swelling ratio. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 539–544  相似文献   

3.
Temperature-sensitive hydrogel beads were prepared by radiation crosslinking of poly(vinyl methyl ether) PVME spheres wrapped in Ca-alginate. The obtained gel beads have diameters in the sub-millimeter or millimeter range (depending on the PVME concentration). They were characterized by sol-gel analysis, swelling measurements, and differential scanning calorimetry. The gel content g increases with increasing radiation dose D. The swelling degree Qv decreases with increasing PVME concentration cp and increasing D. In comparison to PVME bulkgels the phase-transition temperature of the synthesized PVME gel beads is a little decreased.  相似文献   

4.
The synthesis of sequential full interpenetrating polymer networks (IPNs) based on poly (N‐isopropylacrylamide) (PNIPAAm) and negatively charged poly(N‐vinyl‐2‐pyrrolidone) (PNVP) was described and their swelling, drug release, and diffusion studies were investigated. PNIPAAm was used as a host network. According to swelling experiments, IPNs gave relatively lower swelling ratios compared to PNIPAAm hydrogel due to the higher cross‐linking density. Lidocaine (LD) was used as a model drug for the investigation of drug release behavior of IPNs. LD uptake of the IPNs were found to increase from 24 to 166 (mg LD / g dry gel) with increasing amount of PNIPAAm and AMPS contents in the IPN structure. It was observed that the specific interaction between drug and AMPS co‐monomer influenced the drug release profile. In the diffusion transport mechanism study in water, the results indicated that the swelling exponents n for all IPNs are in the range from 0.50 to 0.72. This implies that the swelling transport mechanism was transferred from Fickian to non‐Fickian transport, with increasing AMPS content and NIPAAm character in the IPN structure. In addition, diffusion of LD within the IPNs showed similar trend. The incorporation of AMPS leads to an increase in electrostatic interaction between charge sites on carboxylate ions and cationic LD molecules. Therefore, the highest diffusion coefficient (D) of drug was found for IPN2 sample. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
Interpenetrating polymer network (IPN) strategy was developed to fabricate novel hydrogels composed of cellulose and poly(N‐isopropylacrylamide) (PNIPAAm) with high mechanical strength and adjustable thermosensitivity. Cellulose hydrogels were prepared by chemically cross‐linking cellulose in NaOH/urea aqueous solution, which were employed as the first network. The second network was subsequently obtained by in situ polymerization/cross‐linking of N‐isopropylacrylamide in the cellulose hydrogels. The results from FTIR and solid 13C NMR indicated that the two networks co‐existed in the IPN hydrogels, which exhibited uniform porous structure, as a result of good compatibility. The mechanical and swelling properties of IPN hydrogels were strongly dependent on the weight ratio of two networks. Their temperature‐sensitive behaviors and deswelling kinetics were also discussed. This work created double network hydrogels, which combined the advantages of natural polymer and synthesized PNIPAAm collectively in one system, leading to the controllable temperature response and improvement in the physical properties. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
The submicrometer structure of the temperature-sensitive hydrogels was observed by field emission scanning electron microscopy (FESEM), using synthesized hydrogels of different outer size and shape. The hydrogel structure strongly depends on the homogeneity of the polymer chains during the crosslinking process. A porous structure of the poly(vinyl-methyl-ether) (PVME) bulkgel, synthesized by electron beam irradiation of a concentrated polymer solution, was observed in the swollen state because the phase transitions temperature is acquired through the crosslinking process. Photo-crosslinking reaction of the poly(N-isopropylacrylamide) (PNIPAAm) copolymer in the dry state to form PNIPAAm thin films leads to a rather homogeneous structure. In the shrunk state both gels possess structure being more compact than in the swollen state. We also synthesized PVME and PNIPAAm gels with small outer dimensions in the range of some 100 nm. Heating of the thermo-sensitive polymer in diluted solutions collapses the polymer chains or aggregates. The crosslinking reaction (initiated by electron beam or UV irradiation) of these phase separated structures produces thermo-sensitive microgels. These microgel particles of PVME and PNIPAAm are spherical shape having diameters in the range of 30 - 500 nm.  相似文献   

7.
A functionalized cyclam was synthesized by the attachment of a polymerizable acryloyl group to one of the four nitrogens on the cyclam molecule. The polymerization of the functionalized cyclam was performed with N‐isopropylacrylamide and N,N′‐methylene bisacrylamide, and the gels obtained were studied in the presence of different transition‐metal‐ion solutions. There was a drastic difference in the phase‐transition temperature (Tc) of the poly(N‐isopropylacrylamide) (PNIPAAm)/cyclam gel in comparison with the pure PNIPAAm gel. For the described system, a Tc shift of 15 °C was obtained. The presence of functionalized cyclam increased the hydrophilicity and Tc of the aforementioned polymer gels in deionized water (at pH 6) because of the presence of protonated amino moieties. The PNIPAAm/cyclam gels showed a dependence of the swelling behavior on pH. Tc of the pure PNIPAAm gel was weakly influenced by the presence of any transition‐metal ions, such as Cu2+, Ni2+, Zn2+, and Mn2+. The addition of Cu2+ or Ni2+ to the PNIPAAm/cyclam gel reduced Tc of the polymer gel, and a shift of approximately 12 °C was observed. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1594–1602, 2003  相似文献   

8.
《中国化学会会志》2017,64(2):231-238
Sodium alginate (SA ) was combined with poly(N ‐isopropylacrylamide) (PNIPAAm ) to prepare thermosensitive hydrogels through semi‐interpenetrating polymer network (semi‐IPN ) and fully interpenetrating polymer network (full‐IPN ). The thermosensitive, swelling, mechanical, and thermal properties of pure PNIPAAm , SA /PNIPAAm semi‐IPN , and Ca‐alginate/PNIPAAm full‐IPN hydrogels were investigated. The formation of semi‐IPN and full‐IPN significantly improved the hydrogels’ swelling capability and mechanical properties without altering their thermosensitivity. 5‐Fluorouracil (5‐Fu) was selected as a model drug to study the release behaviors of the hydrogels. It was found that in vitro controlled drug release from semi‐IPN hydrogels showed an initial release burst, followed by a slower and sustained release, before reaching equilibrium. Full‐IPN hydrogels showed slow and sustained release during the whole process. Temperature and pH were found to affect the rate of drug release. Ca‐alginate/PNIPAAm full‐IPN hydrogels have potential application as drug delivery matrices in controlled drug release.  相似文献   

9.
Novel interpenetrating network (IPN) hydrogels (PNIPAAm/clay/PAAm hydrogels) based on poly(N‐isopropylacrylamide) (PNIPAAm) crosslinked by inorganic clay and poly(acrylamide) (PAAm) crosslinked by organic crosslinker were prepared in situ by ultraviolet (UV) irradiation polymerization. The effects of clay content on temperature dependence of equilibrium swelling ratio, deswelling behavior, thermal behavior, and the interior morphology of resultant IPN hydrogels were investigated with the help of Fourier transform infrared spectroscopy, differential scanning calorimeter (DSC), scanning electron microscope (SEM). Study on temperature dependence of equilibrium swelling ratio showed that all IPN hydrogels exhibited temperature‐sensitivity. DSC further revealed that the temperature‐sensitivity was weakened with increasing amount of clay. Study on deswelling behavior revealed that IPN hydrogels had much faster response rate when comparing with PNIPAAm/clay hydrogels, and the response rate of IPN hydrogels could be controlled by clay content. SEM revealed that there existed difference in the interior morphology of IPN hydrogels between 20 [below lower critical solution temperature (LCST)] and 50 °C (above LCST), and this difference would become obvious with a decrease in clay content. For the standpoint of applications, oscillating swelling/deswelling behavior was investigated to determine whether properties of IPN hydrogels would be stable for potential applications. Bovine serum albumin (BSA) was used as model drug for in vitro experiment, the release data suggested that the controlled drug release could be achieved by modulating clay content. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 96–106, 2009  相似文献   

10.
An interpenetrating polymer networks (IPN) consisting of an epoxy-based polymer network and apolymethyl methacrylate network were synthesized and characterized. The IPN showed only one T_g, andhence a homogeneous-phase morphology was suggested. The second-order nonlinear optical coefficient (d_(33))of the IPN was measured to be 1.72×10~(-7) esu. The study of NLO temporal stability at room temperature andelevated temperature (100℃) indicated that the IPN exhibits a high stability in the dipole orientation due tothe permanent entanglements of two component networks in the IPN system. Long-term stability of secondharmonic coefficients was observed at room temperature for more than 1000 h.  相似文献   

11.
A novel poly(N‐isopropylacrylamide) (PNIPA)/PNIPA interpenetrating polymer network (IPN) was synthesized and characterized. In comparison with conventional PNIPA hydrogels, the shrinking rate of the IPN hydrogel increased when gels, swollen at 20 °C, were immersed in 50 °C water. The phase‐transition temperature of the IPN gel remained unchangeable because of the same chemical constituent in the PNIPA gel. The reswelling kinetics were slower than those of the PNIPA hydrogel because of the higher crosslinking density of the IPN hydrogel. The IPN hydrogel had better mechanical strength because of its higher crosslinking density and polymer volume fraction. The release behavior of 5‐fluorouracil (5‐Fu) from the IPN hydrogel showed that, at a lower temperature, the release of 5‐Fu was controlled by the diffusion of water molecules in the gel network. At a higher temperature, 5‐Fu inside the gel could not diffuse into the medium after a burst release caused by the release of the drug on the surface of the gel. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1249–1254, 2004  相似文献   

12.
Poly(N‐isopropylacrylamide)‐block‐poly(ethylene oxide)‐block‐poly(N‐isopropylacrylamide) (PNIPAAm‐b‐PEO‐b‐PNIPAAm) triblock copolymer was synthesized via the reversible addition‐fragmentation chain transfer/macromolecular design via the interchange of xanthate (RAFT/MADIX) process with xanthate‐terminated poly(ethylene oxide) (PEO) as the macromolecular chain transfer agent. The successful synthesis of the ABA triblock copolymer inspired the preparation of poly(N‐isopropylacrylamide)‐block‐poly(ethylene oxide) (PNIPAAm‐b‐PEO) copolymer networks with N,N′‐methylenebisacrylamide as the crosslinking agent with the similar approach. With the RAFT/MADIX process, PEO chains were successfully blocked into poly(N‐isopropylacrylamide) (PNIPAAm) networks. The unique architecture of PNIPAAm‐b‐PEO networks allows investigating the effect of the blocked PEO chains on the deswelling and reswelling behavior of PNIPAAm hydrogels. It was found that with the inclusion of PEO chains into the PNIPAAm networks as midblocks, the swelling ratios of the hydrogels were significantly enhanced. Furthermore, the PNIPAAm‐b‐PEO hydrogels displayed faster response to the external temperature changes than the control PNIPAAm hydrogel. The accelerated deswelling and reswelling behaviors have been interpreted based on the formation of PEO microdomains in the PNIPAAm networks, which could act as the hydrophilic tunnels to facilitate the diffusion of water molecules in the PNIPAAm networks. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

13.
The thermoresponsive magnetic polymer composites and nanofibers were fabricated. Their thermal and magnetic properties were also investigated. Fe3O4 nanoparticles were prepared by coprecipitation method. Further condensation reaction was used to fabricate the double‐layer lauric acid modified Fe3O4 (DLF) nanoparticles dispersed well in water. Thermal properties of poly(N‐isopropylacrylamide) (PNIPAAm) and DLF/PNIPAAm composites and their aqueous solutions were measured by TGA and DSC. With the increasing of DLF content, the interaction between DLF and PNIPAAm caused the lower critical solution temperature (LCST) of polymer solution to shift from 33 to 31.25 °C. The effects of concentration and pH on LCST were also studied. The DLF/PNIPAAm nanofibers were fabricated by electrospinning. Their diameters were around 100–250 nm. Magnetization curves of DLF/PNIPAAm composite and nanofibers were overlapped and the saturated magnetizations were the same. Magnetic attraction behaviors of DLF/PNIPAAm polymer solution at temperatures below and above LCST were different. Aggregation of DLF/PNIPAAm above LCST enhanced magnetic moment density as well as magnetic attraction ability. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 848–856  相似文献   

14.
A thermodynamic analysis of interpenetrating polymer networks (IPNs), at any extent of reaction during their synthesis, is presented for both simultaneous and sequential procedures. A model IPN is assumed to be built up by the independent stepwise homopolymerization of two monomers: a tetrafunctional one, A4, and a trifunctional one, A3. No reaction of copolymerization or grafting is allowed between the two types of polymers. For the case of semi-IPNs, A3 is replaced by A2, i.e., a bifunctional monomer leading to a linear polymer. The free energy of mixing is described by a Flory-Huggins lattice model, whereas the elastic contribution is calculated by assuming affine deformation of an ideal elastic network. Results show that a sequential polymerization gives a more incompatible system (i.e., it enters the metastable region at lower conversions) than a simultaneous polymerization starting from the same monomers. In every case, a semi-IPN is shown to be more compatible than an IPN owing to the fact that the average size of the bifunctional monomer increases less with conversion than the size of the trifunctional monomer. When a sequential polymerization begins from a swollen gel at equilibrium, any increase in the extent of reaction of the solvent monomer will lead to its segregation from the swollen gel. The critical Flory-Huggins interaction parameter provides a simple way to ascertain the possibility of phase separation during a simultaneous polymerization.  相似文献   

15.
The thermal decomposition kinetics of polyurethane/polyethyl acrylate interpenetrating polymer networks (PU/PEA IPN) were studied by means of thermogravimetry and derivative thermogravimetry (TG-DTG), and compared with those of polyurethane (PU) and polyethyl acrylate (PEA). The decomposition temperature (T i) of PU/PEA IPN was found to be higher thanT i of PEA, but lower thanT i of PU. Thermal decomposition kinetic parameters,n andE, estimated using Coats-Redfern method, are found for PU/PEA IPN, PU and PEA to be 1.6, 1.9 and 1.1, and 196.6, 258.6 and 139.2 kJ mol–1, respectively. The results show that PU/PEA IPN is neither a simple mixture of PU and PEA nor a copolymer of them. The mechanism of thermal decomposition of PU/PEA IPN is different from those of PU and PEA. The special network in PU/PEA IPN effectually protects weak bonds in the molecular chain of PU and PEA.We express our thanks to Dr. Yaxiong Xie and Zhiyuong Ren for their help in this work,  相似文献   

16.
The phenomenon of forced compatibilization has been studied in poly(methyl acrylate)-polystyrene PMA-i-PS sequential interpenetrating polymer networks, IPNs, using differential scanning calorimetry. Both networks in the IPN were prepared using the same amount of ethylene glycol dimethacrylate, EGDMA, as crosslinking agent. The samples were subjected to thermal treatments which included annealing at different ageing temperatures T a, for 300 min. From the DSC curves, recorded on heating the enthalpy loss during the isothermal annealing, Δh a was calculated. The dependence of Dh a with the annealing temperature was used to define the temperature interval in which the conformational mobility is significant. The comparison of the Δh a(T a) curves obtained in an IPN and the results obtained with the pure component homo-networks with the same crosslinking density reveal some details of the miscibility of the IPN. In the case of the IPN crosslinked with 10% EGDMA, two peaks are apparent in the Δh a(T a) curve, but the high-temperature peak is shifted towards lower temperatures compared to that of the polystyrene network while the low-temperature one is nearly at the same temperature than the one of the poly(methyl acrylate) homonetwork. This means that compatibilization is not complete and phase separation still exists even at this high crosslinking density. The different behaviour of the high and low temperature transitions can be explained by the dynamic heterogeneity of the sample, i.e. by the different length of cooperativity of the conformational rearrangements of PMA and PS domains at any temperature. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Interpenetrating polymer network (IPN) hydrogel composed of hydrophilic poly(N-isopropylacrylamide) (PNIPAAm) and hydrophobic poly(methyl methacrylate) (PMMA) were synthesized by sequential IPN method using γ-rays from 60Co source. Compared with pure PNIPAAm hydrogel, PNIPAAm/ PMMA IPN hydrogel not only behaved with obvious temperature sensitivity, but also had higher mechanical strength. The shrinking rate of the prepared IPN hydogel was slower than that of PNIPAAm hydrogel and the relative shrinkage was higher than that of PNIPAAm hydrogel. The IPN hydrogel with less PMMA was not stable while with more PMMA it was quite stable. In addition, the release of Methylene Blue (MB) from the IPN hydrogel was slower than that from PNIPAAm hydrogel as well.  相似文献   

18.
We report the preparation of hybrid self-assembled microgel beads by combining the low molecular weight gelator (LMWG) DBS-CONHNH2 and the natural polysaccharide calcium alginate polymer gelator (PG). Microgel formulations based on LMWGs are extremely rare due to the fragility of the self-assembled networks and the difficulty of retaining any imposed shape. Our hybrid beads contain interpenetrated LMWG and PG networks, and are obtained by an emulsion method, allowing the preparation of spherical gel particles of controllable sizes with diameters in the mm or μm range. Microgels based on LMWG/alginate can be easily prepared with reproducible diameters <1 μm (ca. 800 nm). They are stable in water at room temperature for many months, and survive injection through a syringe. The rapid assembly of the LMWG on cooling plays an active role in helping control the diameter of the microgel beads. These LMWG microbeads retained the ability of the parent gel to deliver the bioactive molecule heparin, and in cell culture medium this enhanced the growth of human mesenchymal stem cells. Such microgels may therefore have future applications in tissue repair. This approach to fabricating LMWG microgels is a platform technology, which could potentially be applied to a variety of different functional LMWGs, and hence has wide-ranging potential.

We report microgel beads with diameters of ca. 800 nm based on interpenetrating networks of a low-molecular-weight gelator and a polymer gelator, and demonstrate their use as heparin delivery vehicles to enhance stem cell growth.  相似文献   

19.
A new atom transfer radical polymerization (ATRP) initiator, namely, 2‐(1‐(2‐azidoethoxy)ethoxy)ethyl 2‐bromo‐2‐methylpropanoate containing both “cleavable” acetal linkage and “clickable” azido group was synthesized. Well‐defined azido‐terminated poly(N‐isopropylacrylamide)s (PNIPAAm‐N3)s with molecular weights and dispersity in the range 11,000–19,000 g mol?1 and 1.20–1.28, respectively, were synthesized employing the initiator by ATRP. Acetal containing PCL‐b‐PNIPAAm block copolymer was obtained by alkyne–azide click reaction of azido‐terminated PNIPAAm‐N3 with propargyl‐terminated PCL. Critical aggregation concentration (CAC) of PCL‐b‐PNIPAAm copolymer in aqueous solution was found to be 8.99 × 10?6 M. Lower critical solution temperature (LCST) of PCL‐b‐PNIPAAm copolymer was found to be 32 °C which was lower than that of the precursor PNIPAAm‐N3 (36.4 °C). The effect of dual stimuli viz . temperature and pH on size and morphology of the assemblies of PCL‐b‐PNIPAAm block copolymer revealed that the copolymer below LCST assembled in spherical micelles which subsequently transformed to unstable vesicles above the LCST. Heating these assemblies above 40 °C led to the precipitation of PCL‐b‐PNIPAAm block copolymer. Whereas, at decreased pH, micelles of PCL‐b‐PNIPAAm copolymer disintegrate due to the cleavage of acetal linkage and precipitation of hydrophobic hydroxyl‐terminated PCL. The encapsulated pyrene release kinetics from the micelles of synthesized PCL‐b‐PNIPAAm copolymer was found to be faster at higher temperature and at lower pH. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 1383–1396  相似文献   

20.
A novel type of interpenetrating polymer networks (IPN) hydrogel membrane of poly(N-isopropylacrylamide)/carboxymethyl chitosan (PNIPAAm)/(CMCS) was prepared, and the effects of the feed ratio of components, swelling medium and irradiation dose on the swelling and deswelling properties of the hydrogel was systematically studied. The results showed that the introduction of CMCS did not shift the LCST (at 32 °C), which is similar to the pure PNIPAAm. The lowest swelling ratio was at pH 2. There was little influence of irradiation dose on the thermo- and pH-sensitivity of the IPN hydrogel, increasing dose only decreased the swelling ratio. The PNIPAAm:CMCS=1:4 w/w hydrogel was not thermo-sensitive in distilled water, whereas it showed a discontinuous volume phase transition in pH 2 and a continuous one in pH 8 buffer. Consequently, a combination of pH and temperature can be coupled to control the responsive behavior of these hydrogels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号