首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of granulated semi‐interpenetrating polymer network (semi‐IPN) superabsorbent hydrogels composed of chitosan‐g‐poly(acrylic acid) (CTS‐g‐PAA) and poly(vinyl alcohol) (PVA) were prepared by solution polymerization using ammonium persulfate (APS) as an initiator and N,N′‐methylenebisacrylamide (MBA) as a crosslinker. The effects of reaction conditions such as the concentration of MBA, the weight ratio of AA to CTS, and the content of PVA on water absorbency were investigated. Infrared (IR) spectra and differential scanning calorimetry (DSC) analyses confirmed that AA had been grafted onto CTS backbone, and PVA semi‐interpenetrating into CTS‐g‐PAA networks. SEM analyses indicated that CTS‐g‐PAA/PVA has improved porous surface and PVA was uniformly dispersed in CTS‐g‐PAA network. The semi‐IPN hydrogel containing 10 wt% PVA shows the highest water absorbency of 353 and 53 g g?1 in distilled water and 0.9 wt% NaCl solution, respectively. Swelling behaviors revealed that the introduction of PVA could improve the swelling rate and enhance the pH stability of the superabsorbent hydrogel. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
New ternary semi interpenetrating polymer networks (semi‐IPNs) systems containing acrylamide (AAm), 1‐vinylimidazole (VI) and poly (ethylene glycol) (PEG) have been prepared. AAm/VI hydrogels and semi‐IPN's, poly (AAm/VI/PEG) with 0.25, 0.50, 0.75 and 1.00 g of PEG (per 1.00 g AAm) were prepared by free radical solution polymerization in aqueous solution of AAm with VI as comonomer and a multifunctional crosslinker such as 1,4 butanediol dimethacrylate (BDMA). Swelling experiments were performed in water at 25°C, gravimetrically. The influence of VI and PEG content in hydrogels were examined. AAm/VI and AAm/VI/PEG hydrogels showed large extents of swelling in aqueous media, the swelling being highly dependent on the chemical composition of the hydrogels. Percentage swelling ratio of AAm/VI hydrogels and AAm/VI/PEG hydrogels was shown as 650–4167%. The values of equilibrium water content (EWC) of the hydrogels are between 0.8990 and 0.9750. Diffusion behavior was investigated. Water diffusion into hydrogels was found to be non‐Fickian in character. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
In this study, a novel classical thermo‐ and salt‐sensitive semi‐interpenetrating polymer network (semi‐IPN) hydrogel composed of poly(N,N‐diethylacrylamide) (PDEAm) and κ‐carrageenan (KC) was synthesized by free radical polymerization. The structure of the hydrogels was studied by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). FTIR and SEM revealed that the semi‐IPN hydrogels possessed the structure of H‐bonds and larger number of pores in the network. Compared to the PDEAm hydrogel, the prepared semi‐IPN hydrogels exhibited a much faster response rate to temperature changes and had larger equilibrium swelling ratios at temperatures below the lower critical solution temperature (LCST). The salt‐sensitive behavior of the semi‐IPN hydrogels was dependent on the content of KC. In addition, during the reswelling process, semi‐IPN hydrogels showed a non‐sigmoidal swelling pattern. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
In this work, acrylamide/itaconic acid copolymeric hydrogels are prepared by free radical polymerization initiated by redox initiators of potassium persulfate and N ,N ,N ′,N ′‐tetramethyl ethylene diamine; N ,N ′methylene bisacrylamide was employed as a crosslinking agent. Aniline monomer was absorbed in the network of poly(acrylamide‐co‐itaconic acid) P(AAm‐co‐IA) hydrogel and followed by gamma radiation induced polymerization at room temperature. The novel semi‐interpenetrating network was comprised of linear polyaniline immersed in P(AAm‐co‐IA) matrix. Electrical conductivity of the hydrogels was measured using four‐probe technique. The conductivities for the prepared hydrogels are found to increase from 5.5 × 10?7 S cm?1 for P(AAm‐co‐IA) alone to 4.4 × 10?3 S cm?1 for semi‐interpenetrating polymer network P(AAm‐co‐IA)/polyaniline. Thus, a new composite hydrogel with good conductive properties also displaying enhanced mechanical strength and pH sensitivity was prepared. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
Poly(vinyl alcohol) (PVA) was blended with sodium alginate (Alg) in various ratios and crosslinked with calcium chloride and made into hydrogel membranes. The dependence of the swelling behavior of these Alg‐Ca/PVA hydrogels on pH was investigated. The temperature‐dependent swelling behavior of the semi‐interpenetrating network (semi‐IPN) hydrogels was examined at temperatures from 2 to 45°C and the enthalpy of mixing (ΔHmix) was determined at various temperatures. The molecular structure of the hydrogels was studied by infrared spectroscopy and their water structure in the semi‐IPN hydrogels was measured by differential scanning calorimetry (DSC). The influence of Ca2+ content on the network structure of Alg‐Ca/PVA hydrogels was investigated in terms of the compressive elastic modulus, effective crosslinking density, and the polymer–solvent interaction parameter based on the Flory theory. The loading of alizarin red S (ARS) followed the Langmuir isotherm mechanism and the release kinetics of ARS from the Alg‐Ca/PVA hydrogels followed the Fickian diffusion mechanism. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
In this work, poly((PMMA‐b‐VI)‐co‐AA) (MMA = methyl methacrylate; VI = 1‐vinylimidazole; AA = acrylic acid) hydrogels and poly((PMMA‐b‐VI)‐co‐AA)/TPU (TPU = thermoplastic polyurethane) IPN (interpenetrating polymer networks) hydrogels have been fabricated via versatile infrared laser ignited frontal polymerization by using poly(PMMA‐b‐VI) macromonomer as the mononer. The frontal velocity and Tmax (the highest temperature that the laser beam detected at a fixed point) can be adjusted by varying monomer weight ratios, the concentration of BPO (BPO = benzoyl peroxide) and the amount of TPU. Moreover, the addition of TPU enhances the reactant viscosity to suppress the “fingering” of frontal polymerization (FP) and decrease Tmax of the reaction, providing a new inert carrier (TPU) to assist FP. Through the characterization of Fourier transform‐infrared spectroscopy (FT‐IR), scanning electron microscope (SEM), and differential scanning calorimetry (DSC), the desired structure can be proved to exist in the IPN hydrogels. Furthermore, poly((PMMA‐b‐VI)‐co‐AA)/TPU IPN hydrogels possesses more excellent mechanical behaviors than hydrogels without IPN structure. Besides, the poly((PMMA‐b‐VI)‐co‐AA) hydrogels present splendid sensitive properties toward substances of different flavor including sourness (CA, citric acid or GA, gluconic acid), umami (SG, sodium glutamate), saltiness (SC, sodium chloride), sweetness (GLU, glucose), enabling their potential as artificial tongue‐like sensing materials. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1210–1221  相似文献   

7.
In this study, (sodium alginate (NaAlg)/acrylamide (AAm)) interpenetrating polymer networks (IPN) have been prepared at three different compositions, where the sodium alginate composition varies 1, 2, and 3% (w/v) in 50% (w/v) acrylamide solutions. These solutions have been irradiated with a 60Co‐γ source at different doses. The percent conversion was determined gravimetrically and 100% gelation was achieved at the 10.0 kGy dose. The swelling results at pH 7.0 and 9.0 indicated that (NaAlg/AAm)3IPN hydrogel, containing 3% NaAlg showed maximum % swelling in water, with swelling increasing in the order of Ni2+>Cd2+>Pb2+. Diffusion in aqueous solutions of metal ions within (NaAlg/AAm)IPN hydrogels was found to be Fickian character. Diffusion coefficients of (NaAlg/AAm)IPN hydrogels in water and aqueous solutions of metal ions were calculated. The maximum weight loss temperature and half life temperature for NaAlg, PAAm, (NaAlg/AAm)IPN and (NaAlg/AAm)IPN‐metal ion systems were found from thermal analysis studies. In the adsorption experiments, the efficiency of (NaAlg/AAm)IPN hydrogels to adsorb nickel, cadmium and lead ions from water was studied. (NaAlg/AAm)IPN hydrogels showed different adsorption for different aqueous solution of metal ion at pH 7.0. Adsorption isotherms were constructed for the (NaAlg/AAm)IPN‐metal ion systems. S type adsorption in the Giles classification system was found.  相似文献   

8.
Semi‐interpenetrating network (semi‐IPN) hydrogels, composed of poly(aspartic acid) (PAsp) and poly(acrylic acid) (PAAc) with various ratios of PAsp to AAc, were prepared. In this work, swelling kinetics was investigated through calculating some parameters. The swelling ratios were measured at room temperature, using urea solutions as liquids to be absorbed. Compared to in deionized water, the hydrogels showed larger swelling ratios in urea solutions, which might be attributed to the chemical composition of urea. The equilibrium swelling ratio could achieve 600 g/g, and the equilibrium urea/water contents were more than 0.99. The diffusion exponents were between 0.5 and 0.7, suggesting that the solvent transport into the hydrogel was dominated by both diffusion and relaxation controlled systems. Therefore, the PAsp/PAAc semi‐IPN hydrogels were appropriate to carry substances in a urea/water environment for pharmaceutical, agricultural, environmental, and biomedical applications. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 666–671, 2010  相似文献   

9.
pH‐sensitive poly(acrylamide‐co‐itaconic acid) [P(AAm/IA)] hydrogels were prepared by radiation induced copolymerization of acrylamide (AAm) and itaconic acid (IA) at various ratios. Swelling and shrinking behaviors of these hydrogels were found greatly dependent on the composition of the hydrogel and pH of the buffer solution. The basic structural parameters of the P(AAm/IA) networks such as the molecular weight between crosslinks (M c) and polymer–solvent interaction parameter (χ) were also determined using the modified Flory‐Rehner equations. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2586–2594, 2004  相似文献   

10.

Acrylamide (AAm)/Acrylic Acid (AAc) copolymers have been prepared by gamma irradiation of binary mixtures at three different compositions where the acrylamide/acrylic acid mole ratios varied around 15, 20, and 30%. Threshold dose for 100% conversion of monomers into hydrogels was found to be 8.0 kGy. Poly(Acrylamide‐co‐Acrylic Acid) (poly(AAm‐co‐AAc)) hydrogels have been considered for the removal of uranyl ions from aqueous solutions. Swelling behavior of these hydrogels was determined in distilled water at different pH values and in aqueous solutions of uranyl ions. The results of swelling tests at pH 8.0 indicated that poly(AAm‐co‐AAc) hydrogel, containing 15% acrylamide showed maximum % swelling. Diffusion of water and aqueous solutions of uranyl ion into hydrogels was found to be non‐Fickian in character and their diffusion coefficients were calculated. The effect of pH, composition of hydrogel, and concentration of uranyl ions on the adsorption process were studied at room temperature. It was found that one gram of dry poly(AAm‐co‐AAc) hydrogel adsorbed 70–320 mg and 70–400 mg uranyl ions from aqueous solutions of uranyl nitrate and uranyl acetate in the initial concentration range of 50–1500 mg UO2 2+L?, depending on the amount of AAc in the hydrogels, respectively. Adsorption isotherms were constructed for poly(AAm‐co‐AAc)–uranyl ion system indicating an S type of adsorption in the Giles classification system. It is concluded that crosslinked poly(AAm‐co‐AAc) hydrogels can be successfully used for the removal of uranyl ions from their aqueous solutions.  相似文献   

11.
A novel semi‐IPN nanocomposite hydrogel (CMC/PNIPA/Clay hydrogel) based on linear sodium carboxymethylcellulose (CMC) and poly(N‐isopropylacrylamide) (PNIPA) crosslinked by inorganic clay was prepared. The structure and morphology of these hydrogels were investigated and their swelling and deswelling kinetics were studied in detail. TEM images showed that the clay was substantially exfoliated to form nano‐dimension platelets dispersed homogeneously in the hydrogels and acted as a multifunctional crosslinker. The CMC/PNIPA/Clay hydrogels swell faster than the corresponding PNIPA/Clay hydrogels at pH 7.4, whereas they swell slower than the PNIPA/Clay hydrogels at pH 1.2. The CMC/PNIPA/Clay nanocomposite hydrogels showed much higher deswelling rates, which was ascribed to more passway formed in these hydrogels for water to diffuse in and out. The deswelling process of the hydrogels could be approximately described by the first‐order kinetic equation and the deswelling rate decreased with increasing clay content. The mechanical properties of the CMC/PNIPA/Clay nanocomposite hydrogels were analyzed based on the theory of rubber elasticity. It was found that with increasing clay content, the effective crosslink chain density, ve, increased whereas the molecular weight of the chains between crosslinks Mc decreased. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1546–1555, 2008  相似文献   

12.
The aqueous solution behavior and thermoreversible gelation properties of pyridine‐end‐functionalized poly(ethylene glycol)–poly(L ‐lactide) (PEG–(PLLA)8–py) star block copolymers in the presence of coordinating transition metal ions were studied. In aqueous solutions, the macromonomers self‐assembled into micelles and micellar aggregates at low concentrations and formed physically crosslinked, thermoreversible hydrogels above a critical gel concentration (CGC) of 8% w/v. In the presence of transition metal ions like Cu(II), Co(II), or Mn(II), the aggregate dimensions increased. Above the CGC, the gel–sol transition shifted to higher temperatures due to the formation of additional crosslinks from intermolecular coordination complexes between metal ions and pyridine ligands. Furthermore, as an example, PEG–(PLLA)8–py hydrogels stabilized by Mn(II)–pyridine coordination complexes were more resistant against degradation/dissolution when placed in phosphate buffered saline at 37 °C when compared with hydrogels prepared in water. Importantly, the stabilizing effect of metal–ligand coordination was noticeable at very low Cu(II) concentrations, which have been reported to be noncytotoxic for fibroblasts in vitro. These novel PEG–(PLLA)8–py metallo‐hydrogels, which are the first systems to combine metal–ligand coordination with the advantageous properties of PEG–PLLA copolymer hydrogels, are appealing materials that may find use in biomedical as well as environmental applications like the removal of heavy metal ions from waste streams. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

13.
To combine the advantages of a biopolymer with hydrotalcite in an enzyme immobilization system, the intercalation polymerization was used to prepare poly(acrylic acid‐co‐acrylamide)/hydrotalcite (PAA‐AAm/HT) nanocomposite hydrogels using sodium methyl allyl sulfonate as intercalation agent. Transmission electron microscopy, X‐ray diffraction, and Fourier transform infrared spectroscopy results revealed that sodium methyl allyl sulfonate chains entered into the interlayer of HT, the interaction between them has taken place, and HT was dramatically exfoliated into nanoscale and homogeneously dispersed in the PAA‐AAm matrix. Transmission electron microscopy and cryo scanning electron microscope results showed that dried hydrogels were regular spherical particles, and swollen hydrogels revealed homogeneous porous network structures. Then, PAA‐AAm/HT nanocomposite hydrogels were used to immobilize carbonic anhydrase (CA), and the CO2 hydration activities of free enzyme and immobilized enzyme were evaluated. Results showed that immobilized CA retained the majority of the enzyme activity. The reason may be the formation of a microenvironment almost all of which is composed of free water inside the porous network structures. Therefore, the immobilized CA is of great potential in the removal of trace CO2 from the closed spaces. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3232–3240, 2009  相似文献   

14.
Temperature sensitive poly{N‐[3‐(dimethylaminopropyl)]methacrylamide‐co‐acrylamide} [P(DMAPMA‐co‐AAm)] hydrogels were prepared by the free‐radical crosslinking copolymerization of corresponding monomers in water with N,N‐methylenebisacrylamide as the crosslinker, ammonium persulfate as the initiator, and N,N,N′,N′‐tetramethylethylenediamine as the activator. The swelling equilibrium of the P(DMAPMA‐co‐AAm) hydrogels was investigated as a function of temperature in aqueous solutions of the anionic surfactant sodium dodecyl sulfate and the cationic surfactant dodecyltrimethylammonium bromide. In pure water, regardless of the amount of N,N‐methylenebisacrylamide, the P(DMAPMA‐co‐AAm) hydrogels showed a discontinuous phase transition between 30 and 36 °C. However, the transition temperature changed from discontinuous to continuous with the addition of surfactants; this was ascribed to the conversion of nonionic P(DMAPMA‐co‐AAm) hydrogels into polyelectrolyte hydrogels due to the binding of surfactants through hydrophobic interactions. Additionally, the concentrations of free sodium dodecyl sulfate and dodecyltrimethylammonium bromide ions were measured at different temperatures by conductometry, and it was found that the electric conductivity of the P(DMAPMA‐co‐AAm)–surfactant systems depended strongly on the swelling ratio; most notably, it changed drastically near the phase‐transition temperature of the P(DMAPMA‐co‐AAm) hydrogel. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1645–1652, 2006  相似文献   

15.
Novel interpenetrating network (IPN) hydrogels (PNIPAAm/clay/PAAm hydrogels) based on poly(N‐isopropylacrylamide) (PNIPAAm) crosslinked by inorganic clay and poly(acrylamide) (PAAm) crosslinked by organic crosslinker were prepared in situ by ultraviolet (UV) irradiation polymerization. The effects of clay content on temperature dependence of equilibrium swelling ratio, deswelling behavior, thermal behavior, and the interior morphology of resultant IPN hydrogels were investigated with the help of Fourier transform infrared spectroscopy, differential scanning calorimeter (DSC), scanning electron microscope (SEM). Study on temperature dependence of equilibrium swelling ratio showed that all IPN hydrogels exhibited temperature‐sensitivity. DSC further revealed that the temperature‐sensitivity was weakened with increasing amount of clay. Study on deswelling behavior revealed that IPN hydrogels had much faster response rate when comparing with PNIPAAm/clay hydrogels, and the response rate of IPN hydrogels could be controlled by clay content. SEM revealed that there existed difference in the interior morphology of IPN hydrogels between 20 [below lower critical solution temperature (LCST)] and 50 °C (above LCST), and this difference would become obvious with a decrease in clay content. For the standpoint of applications, oscillating swelling/deswelling behavior was investigated to determine whether properties of IPN hydrogels would be stable for potential applications. Bovine serum albumin (BSA) was used as model drug for in vitro experiment, the release data suggested that the controlled drug release could be achieved by modulating clay content. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 96–106, 2009  相似文献   

16.
The purpose of the study is to obtain multicomponent polyelectrolyte hydrogels with optimal synergistic properties by combining a modified starch with a synthetic one. Thus, new low‐cost and biocompatible semi‐interpenetrating polymer network (semi‐IPN) hydrogels of carboxymethyl starch and poly(2‐dimethylaminoethyl methacrylate) are prepared and investigated. The synthesized hydrogels are studied with respect to the specific characteristics of the gels: swelling kinetics, thermal analysis, viscoelastic characteristics, and their ability to be used as a matrix in drug delivery systems. Therefore, the semi‐IPN gels are loaded with ibuprofen, followed by additional tests to assess the in vitro drug release. The cytocompatibility of the hydrogels with respect to their composition is evaluated in vitro on fibroblast cell culture. The investigations confirm the obtainment of new semi‐IPN hydrogels with pH and temperature responsiveness, good mechanical strength, and potential for use as drug delivery systems or transdermal patches.  相似文献   

17.
Semi‐interpenetrating polymer networks (semi‐IPNs) were prepared by reactions of 2,4‐tolylene diisocyanate (TDI) and hydroxy‐terminated 4‐arm star‐shaped l ‐lactide oligomers (H4LAOn's) with the degrees of polymerization of lactate unit per one arm, n = 3, 5, and 10 in the presence of poly(ε‐caprolactone) (PCL). Morphologies, thermal, and mechanical properties of the TDI‐bridged H4LAOn (TH4LAOn)/PCL semi‐IPNs were evaluated by comparing with those of poly(l ‐lactide) (PLA)/PCL blends. Compatibility between the two components of the TH4LAOn/PCL semi‐IPN with a PCL content not more than 50 wt % was much better than those of the PLA/PCL blends with the same PCL content. All the TH4LAOn networks were substantially amorphous and their tan δ peak or glass transition temperatures increased with decreasing n value. Most of the semi‐IPNs did not show clear glass transition temperature related to both the components. Tensile toughness and elongation at break for all the TH4LAOn/PCL semi‐IPNs were much higher than those for the PLA/PCL blends with the same PCL content. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1420–1428  相似文献   

18.
Interpenetrating polymer network (IPN) strategy was developed to fabricate novel hydrogels composed of cellulose and poly(N‐isopropylacrylamide) (PNIPAAm) with high mechanical strength and adjustable thermosensitivity. Cellulose hydrogels were prepared by chemically cross‐linking cellulose in NaOH/urea aqueous solution, which were employed as the first network. The second network was subsequently obtained by in situ polymerization/cross‐linking of N‐isopropylacrylamide in the cellulose hydrogels. The results from FTIR and solid 13C NMR indicated that the two networks co‐existed in the IPN hydrogels, which exhibited uniform porous structure, as a result of good compatibility. The mechanical and swelling properties of IPN hydrogels were strongly dependent on the weight ratio of two networks. Their temperature‐sensitive behaviors and deswelling kinetics were also discussed. This work created double network hydrogels, which combined the advantages of natural polymer and synthesized PNIPAAm collectively in one system, leading to the controllable temperature response and improvement in the physical properties. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
The interaction of uranyl ions (UO) with interpenetrating polymer networks (IPNs) based on amidoximated poly(acrylonitrile)/poly(N‐vinyl 2‐pyrrolidone) was examined. The adsorption capacity of IPN hydrogels as well as the adsorption kinetics and the effect of temperature on UO ion adsorption were investigated. Thermodynamic quantities and kinetic parameters were calculated with adsorption isotherm data. The initial adsorption‐rate values for each temperature were calculated, and the corresponding rate constants decreased with increasing temperature. The adsorption enthalpy, entropy, and free energy of the UO ion with amidoximated IPN hydrogels were calculated from basic thermodynamic relations. It was assessed that adsorption occurred by strong electrostatic interactions with an adsorption enthalpy of ?31.5 kJ/mol. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 986–993, 2004  相似文献   

20.
KHALIL M. M. H.  MASHALY M. M.   《中国化学》2008,26(9):1669-1677
A new series of binary mononuclear complexes were prepared from the reaction of the hydrazone ligand, 2-carboxyphenylhydrazo-benzoylacetone (H2L), with the metal ions, Cd(II), Cu(II), Ni(II), Co(II), Th(IV) and UO2(VI). The binary Cu(II) complex of H2L was reacted with the ligands 1,10-phenanthroline or 2-aminopyridine to form mixed-ligand complexes. The binary complexes of Cu(II) and Ni(II) are suggested to have octahedral configurations. The Cd(II) and Co(II) complexes are suggested to have tetrahedral and/or square-planar geometries, respectively. The Th(IV) and UO2(VI) complexes are suggested to have octahedral and dodecahedral geometries, respectively. The mixed-ligand complexes have octahedral configurations. The structures of all complexes and the corresponding thermal products were elucidated by elemental analyses, conductance, IR and electronic absorption spectra, magnetic moments, 1H NMR and TG-DSC measurements as well as by mass spectroscopy. The ligand and some of the metal complexes were found to activate the enzyme pectinlyase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号