首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cui  Haochen  Wu  Jayne  Eda  Shigetoshi  Chen  Jiangang  Chen  Wei  Zheng  Lei 《Mikrochimica acta》2015,182(13):2361-2367

A label-free and single-step method is reported for rapid and highly sensitive detection of bisphenol A (BPA) in aqueous samples. It utilizes an aptamer acting as a probe molecule immobilized on a commercially available array of interdigitated aluminum microelectrodes. BPA was quantified by measuring the interfacial capacitance change rate caused by the specific binding between bisphenol A and the immobilized aptamer. The AC signal also induces an AC electrokinetic effect to generate microfluidic motion for enhanced binding. The capacitive aptasensor achieves a limit of detection as low as 10 fM(2.8 fg ⋅ mL − 1) with a 20 s response time. The method is inexpensive, highly sensitive, rapid and therefore provides a promising technology for on-site detection of BPA in food and water samples.

A. AC electrokinetics effect plays a vital role in BPA detection by introducing microfluidic movement to accelerate the molecular transport to the electrode surface.

B. The ACEK capacitive aptasensor has a limit of detection as low as 10 fM (2.8 fg ⋅ mL − 1) with a 20-s response time.

  相似文献   

2.
Sun  Dong  Xu  Caiqun  Long  Jianghua  Ge  Teng 《Mikrochimica acta》2015,182(15):2601-2606

This article describes an electrochemical sensor for the dye additive Sunset Yellow (SY). It consists of a carbon paste electrode modified with nanostructured resorcinol-formaldehyde (RF) resin. The RF resin warrants strong signal enhancement and a strongly increased oxidation peak currents of SY at 0.66 V (vs. SCE). The effects of pH value, amount of RF polymer, accumulation potential and time were optimized. The sensor has a linear response to SY in the 0.3 to 125 nM concentration range, and the limit of detection is 0.09 nM after a 2-min accumulation time. The electrode was applied to the analysis of samples of wastewater and drinks, and the results are consistent with those obtained by HPLC.

Nanostructured resorcinol-formaldehyde (RF) resin was prepared and used as a material for electrochemical determination of Sunset Yellow.

  相似文献   

3.
Zheng  Dongyun  Liu  Xiaojun  Zhu  Shanying  Cao  Huimin  Chen  Yaguang  Hu  Shengshui 《Mikrochimica acta》2015,182(15):2403-2410

We describe an electrochemical sensor for nitric oxide that was obtained by modifying the surface of a nanofiber carbon paste microelectrode with a film composed of hexadecyl trimethylammonium bromide and nafion. The modified microelectrode displays excellent catalytic activity in the electrochemical oxidation of nitric oxide. The mechanism was studied by scanning electron microscopy and cyclic voltammetry. Under optimal conditions, the oxidation peak current at a working voltage of 0.75 V (vs. SCE) is related to the concentration of nitric oxide in the 2 nM to 0.2 mM range, and the detection limit is as low as 2 nM (at an S/N ratio of 3). The sensor was successfully applied to the determination of nitric oxide released from mouse hepatocytes.

NO electrochemical sensor based on CTAB-Nafion/CNFPME was fabricated through a simple method and applied to detect NO released from mouse hepatocytes successfully.

  相似文献   

4.
Ju  Ke-Jian  Feng  Jin-Xia  Feng  Jiu-Ju  Zhang  Qian-Li  Xu  Tian-Qi  Wei  Jie  Wang  Ai-Jun 《Mikrochimica acta》2015,182(15):2427-2434

A nanocomposite consisting of coral-like gold nanostructures on reduced graphene oxide (RGO) was synthesized with the assistance of dimethylbiguanide (DMBG). It was then fabricated on a glassy carbon electrode, coating with cysteamine in order to enable the immobilization of acetylcholinesterase (AChE) as a model enzyme whose activity of hydrolyzing the substrate of acetylthiocholine is inhibited by the pesticide triazophos. The biosensor has response to acetylthiocholine in the 0.3 ~ 300 μM concentration range at 0.65 V (vs. SCE). The inhibition of the enzyme by triazophos can be determined in concentrations of up to 210 ppb, with a detection limit of 0.35 ppb of triazophos (S/N = 3). The biosensor is highly reproducible and acceptably stable.

Coral-like gold nanostructures supported on reduced graphene oxide were synthesized with the assistance of dimethylbiguanide to fabricate an acetylcholinesterase (AChE) biosensor, which exhibited high reproducibility and good stability, providing a good platform for the detection of organophosphorus pesticides.

  相似文献   

5.
Pan  Feng  Mao  Jie  Chen  Qiang  Wang  Pengbo 《Mikrochimica acta》2013,180(15):1471-1477

Magnetic Fe3O4@SiO2 core shell nanoparticles containing diphenylcarbazide in the shell were utilized for solid phase extraction of Hg(II) from aqueous solutions. The Hg(II) loaded nanoparticles were then separated by applying an external magnetic field. Adsorbed Hg(II) was desorbed and its concentration determined with a rhodamine-based fluorescent probe. The calibration graph for Hg(II) is linear in the 60 nM to 7.0 μM concentration range, and the detection limit is at 23 nM. The method was applied, with satisfying results, to the determination of Hg(II) in industrial waste water.

  相似文献   

6.

We report on the first application of terahertz metamaterials acting as transducers for chemical sensors based on conducting polymers. In our feasibility study aimed at sensing of gaseous hydrochloric and ammonia, a two-dimensional sensor metamaterial consisting of an array of split-ring resonators on the surface of undoped silicon wafer was prepared. The surface of the resonator was coated with a 150-μm layer of polyaniline. Binding of hydrogen chloride to polyaniline leads to distinct changes in the resonance frequency of the metamaterial. Measurements can be performed both in the reflection and transmission mode. A numerical simulation of the response revealed an increase of both the real and the imaginary components of the dielectric function of the polyaniline film. These changes are attributed to the transition from emaraldine base to emeraldine salt. The results demonstrate a new approach for formation of highly sensitive transducers for chemical sensors.

  相似文献   

7.
Dewi  Melissa R.  Laufersky  Geoffry  Nann  Thomas 《Mikrochimica acta》2015,182(13):2293-2298

Hetero-dimeric magnetic nanoparticles of the type Au-Fe3O4 have been synthesised from separately prepared, differently shaped (spheres and cubes), monodisperse nanoparticles. This synthesis was achieved by the following steps: (a) Mono-functionalising each type of nanoparticles with aldehyde functional groups through a solid support approach, where nanoparticle decorated silica nanoparticles were fabricated as an intermediate step; (b) Derivatising the functional faces with complementary functionalities (e.g. amines and carboxylic acids); (c) Dimerising the two types of particles via amide bond formation. The resulting hetero-dimers were characterised by high-resolution TEM, Fourier transform IR spectroscopy and other appropriate methods.

Nano-LEGO: Assembling two types of separately prepared nanoparticles into a hetero-dimer is the first step towards complex nano-architectures. This study shows a solid support approach to combine a gold and a magnetite nanocrystal.

  相似文献   

8.
Zhao  Hengzhi  Dong  Jingjing  Zhou  Fulin  Li  Baoxin 《Mikrochimica acta》2015,182(15):2495-2502

We describe a simple and homogenous fluorimetric method for sensitive determination of DNA. It is based on target-triggered isothermal cycling and a cascade exponential amplification reaction that generates a large amount of a G-quadruplex. This results in strong fluorescence signal when using thioflavin T as a G-quadruplex-specific light-up fluorescent probe. Tedious handling after amplification is widely eliminated by the addition of thioflavin T. No other exogenous reagent is required. This detection platform is inexpensive and rapid, and displays high sensitivity for target DNA, with a detection limit as low as 91 pM.

The addition of target DNA can trigger the isothermal exponential amplification reaction to generate a large amount of G-quadruplex sequence oligonucleotides and then employ thioflavin T (Th T) (a G-quadruplex-specific light-up dye) as signal output for sensitive DNA detection.

  相似文献   

9.
Mei  He  Sheng  Qu  Wu  Huimin  Zhang  Xiuhua  Wang  Shengfu  Xia  Qinghua 《Mikrochimica acta》2015,182(15):2395-2401

Alloy nanoparticles of the type PtxFe (where x is 1, 2 or 3) were synthesized by coreduction with sodium borohydride in the presence of carbon acting as a chemical support. The resulting nanocomposites were characterized by scanning electron microscopy and X-ray diffraction. The nanocomposite was placed on a glassy carbon electrode, and electrochemical measurements indicated an excellent catalytic activity for the oxidation of glucose even a near-neutral pH values and at a working voltage as low as 50 mV (vs. SCE). Under optimized conditions, the sensor responds to glucose in the 10.0 μM to 18.9 mM concentration range and with a 3.0 μM detection limit (at an S/N ratio of 3). Interferences by ascorbic acid, uric acid, fructose, acetamidophenol and chloride ions are negligible.

Nonenzymatic sensing of glucose is demonstrated at neutral pH values and low working potential using a glassy carbon electrode modified with platinum-iron alloy nanoparticles on a carbon support.

  相似文献   

10.
Lin  Zihan  Pan  Dong  Hu  Tianyu  Liu  Ziping  Su  Xingguang 《Mikrochimica acta》2015,182(11):1933-1939

We describe a near-infrared (NIR) fluorescent thrombin assay using a thrombin-binding aptamer (TBA) and Zn(II)-activated CuInS2 quantum dots (Q-dots). The fluorescence of Zn(II)-activated Q-dots is quenched by the TBA via photoinduced electron transfer, but if thrombin is added, it will bind to TBA to form G-quadruplexes and the Q-dots are released. As a result, the fluorescence intensity of the system is restored. This effect was exploited to design an assay for thrombin whose calibration plot, under optimum conditions, is linear in the 0.034 to 102 nmol L−1 concentration range, with a 12 pmol L−1 detection limit. The method is fairly simple, fast, and due to its picomolar detection limits holds great potential in the diagnosis of diseases associated with coagulation abnormalities and certain kinds of cancer.

We developed a simple near-infrared fluorescence assay using thrombin binding aptamer (TBA) and Zn(II)-activated CuInS2 quantum dots for the highly selective and sensitive detection of thrombin.

  相似文献   

11.
Liu  Guangyang  Yang  Xin  Li  Tengfei  Yu  Hailong  Du  Xinwei  She  Yongxin  Wang  Jing  Wang  Shanshan  Jin  Fen  Jin  Maojun  Shao  Hua  Zheng  Lufei  Zhang  Yanxin  Zhou  Pan 《Mikrochimica acta》2015,182(11):1983-1989

We report on a method for the determination of the herbicide atrazine in tap water samples using melamine-modified gold nanoparticles (Mel-AuNPs). If a solution containing atrazine is added to a solution of such NPs, a color change occurs from wine-red to blue. This is due to a transition from monodisperse to aggregated Mel-AuNPs and caused by strong hydrogen bonding between atrazine and melamine. The color change can be monitored by a UV–vis spectrophotometer or with bare eyes. The ratio of the absorbances at 640 and 523 nm is linearly related to the logarithm of the atrazine concentration in the 0.165 to 16.5 μM range, and (with different slope) in the 16.5 μM to 330 μM range. The detection limit of atrazine is as low as 16.5 nM (S/N = 3). The method was successfully applied to the determination of atrazine in spiked tap water and gave recoveries that ranged from 72.5 % to 102.3 %.

  相似文献   

12.

We have investigated the gas sensing properties of ZnO thin films (100 to 200 nm thickness) deposited by room-temperature radio frequency magnetron sputtering. The sensitivity of the films to ethanol vapor was measured in the 10 to 50 ppm concentration range at operating temperatures between 200 and 400 °C. A synergetic effect of decreasing grain size and increasing operating temperature was observed towards the improvement of the sensitivity, reaching a value of 54 and a limit of detection as low as 0.61 ppm. The decrease in the grain size resulted in prolonged response time but faster recovery. In any case, both response time and recovery time are < 400 s. The results demonstrate that room-temperature magnetron sputtering is a viable approach to enhance the performances of ZnO films in sensors for ethanol vapor.

Sensor response for ZnO films in presence of 50 ppm ethanol as a function grain size and temperature

  相似文献   

13.
Chen  Lijian  Wang  Nan  Wang  Xindong  Ai  Shiyun 《Mikrochimica acta》2013,180(15):1517-1522

Platinum nanoparticles (Pt-NPs) with sizes in the range from 10 to 30 nm were synthesized using protein-directed one-pot reduction. The model globular protein bovine serum albumin (BSA) was exploited as the template, and the resulting BSA/Pt-NPs were studied by transmission electron microscopy, energy dispersive X-ray spectroscopy, and resonance Rayleigh scattering spectroscopy. The modified nanoparticles display a peroxidase-like activity that was exploited in a rapid method for the colorimetric determination of hydrogen peroxide which can be detected in the 50 μM to 3 mM concentration range. The limit of detection is 7.9 μM, and the lowest concentration that can be visually detected is 200 μM.

Pt-NPs were synthesized using BSA-directed one-pot reduction and BSA/Pt-NPs composite can effectively catalyze the oxidation of TMB producing blue solution in the presence of H2O2.

  相似文献   

14.
He  Yi  Zhang  Xianhui  Yu  Haili 《Mikrochimica acta》2015,182(11):2037-2043

We demonstrate a selective and sensitive method for determination of creatinine using citrate-stabilized gold nanoparticles (AuNPs) as a colorimetric probe. It is based on a direct cross-linking reaction that occurs between creatinine and AuNPs that causes aggregation of AuNPs and results in a color change from wine red to blue. The absorption peak is shifted from 520 to 670 nm. Under the optimized conditions, the shift in the absorption peak is related the logarithm of the creatinine concentration in the 0.1 to 20 mM range, and the instrumental detection limit (LOD) is 80 μM. This LOD is about one order of magnitude better than that that of the Jaffé method (720 μM). The assay displays good selectivity over interfering substances including various inorganic ions, organic small compounds, proteins, and biothiols. It was successfully employed to the determination of creatinine in spiked human urine.

The colorimetric assay for creatinine uses citrate-stabilized gold nanoparticles (AuNPs) and a direct cross-linking reaction that occurs between creatinine and AuNPs that causes aggregation of AuNPs and results in a color change from wine red to blue.

  相似文献   

15.
Bhaisare  Mukesh Lavkush  Talib  Abou  Khan  M. Shahnawaz  Pandey  Sunil  Wu  Hui-Fen 《Mikrochimica acta》2015,182(13):2173-2181

A jelly-like form of carbon dots (C-dots) was prepared by microwave-assisted synthesis from citric acid in the presence of tetraoctylammonium bromide. The effect of the concentration of tetraoctylammonium bromide was examined. The synthesized carbon dots were characterized by UV–vis, XRD, FTIR, fluorescence and HR-TEM. Fluorescence extends from 350 to 600 nm, and the corresponding excitation wavelengths range from 300 to 460 nm. Quantum yields are at around 0.11. A cytotoxicity study showed carbon dots to be cell permeable and biocompatible which renders them appropriate for imaging applications. The dots were used to image HeLa cell lines via the blue fluorescence of the dots.

C-dots were synthesized from citric acid by microwave heating in presence of varying concentrations of tetraoctylammonium bromide (TOAB) as a micellar template. The excellent optical properties of the nanoparticles make them well suitable for bio-imaging of HeLa cells.

  相似文献   

16.
Lv  Hua  Li  Shuang  Liu  Yumin  Wang  Gongke  Li  Xiang  Lu  Yan  Wang  Jianji 《Mikrochimica acta》2015,182(15):2513-2520

We describe a reversible fluorescent DNA–based INHIBIT logic gate for the determination of silver(I) and iodide ions using graphene oxide (GO) as a signal transducer and Ag(I) and iodide as mechanical activators. The basic performance, optimized conditions, sensitivity and selectivity of the logic gate were investigated and revealed that the method is highly sensitive and selective over potentially interfering ions. The limits of detection for Ag(I) and iodide are 10 nM and 50 nM, respectively. This logic gate was successfully applied to the determination of Ag(I) and iodide in (spiked) tap water and river water. It was also used for the determination of iodide in human urine samples with satisfactory results. Compared to other methods, this INHIBIT logic gate is simple in design and has small background interference.

A simple and reversible fluorescent DNA-based INHIBIT logic gate is designed by using graphene oxide as a signal transducer and silver ions and iodide as mechanical activators.

  相似文献   

17.
Chen  Guifang  Shi  Hai  Ban  Fangfang  Zhang  Yuanyuan  Sun  Lizhou 《Mikrochimica acta》2015,182(15):2469-2476

We report on an electrochemical method for the determination of the activity of trypsin. A multi-functional substrate peptide (HHHAKSSATGGC-HS) is designed and immobilized on a gold electrode. The three His residues in the N-terminal are able to recruit thionine-loaded graphene oxide (GO/thionine), a nanocover adopted for signal amplification. Once the peptide is cleaved under enzymatic catalysis by trypsin (cleavage site: Lys residue), the His residues leave the electrode, and the GO/thionine cannot cover the peptide-modified electrode anymore. Thus, the changes of the electrochemical signal of thionine, typically acquired at a voltage of -0.35 V, can be used to determine the activity of trypsin. A detection range of 1 × 10−4 to 1 U, with a detection limit of 3.3 × 10−5 U, can be achieved, which is better than some currently available methods. In addition, the method is highly specific, facile, and has the potential for the detection of trypsin-like proteases.

Graphene oxide was adopted as a nanocover for the development of a sensitive electrochemical method to detect the activity of trypsin.

  相似文献   

18.
Tang  Juan  Tang  Dianping 《Mikrochimica acta》2015,182(13):2077-2089

Electrochemical immunodetection has attracted considerable attention due to its high sensitivity, low cost and simplicity. Large efforts have recently made in order to design ultrasensitive assays. Noble metal nanoparticles (NM-NPs) offer advantages such as high conductivity and large surface-to-volume ratio. NM-NPs therefore are excellent candidates for developing electrochemical platforms for immunodetection and as signal tags. The use of biofunctionalized NM-NPs often results in amplified recognition via stronger loading of signal tags, and also in enhanced signal. This review (with 87 references) gives an overview on the current state in the use of NM-NPs in Non-enzymatic electrochemical immunosensing. We discuss the application of NM-NPs as electrode matrices and as electroactive labels (either as a carrier or as electrocatalytic labels), and compare the materials (mainly nanoparticles of gold, platinum, or of bimetallic materials) in terms of performance (for example by increasing sensitivity via label amplification or via high densities of capture molecules). A conclusion covers current challenges and gives an outlook. Rather than being exhaustive, the review focuses on representative examples that illustrate novel concepts and promising applications. NM-NPs based immunosensing opens a series of concepts for basic research and offers new tools for determination of trace amounts of protein-related analytes in environment and clinical applications.

  相似文献   

19.
Qiu  Huazhang  Liu  Zong&#;en  Huang  Zhengjun  Chen  Min  Cai  Xiaohui  Weng  Shaohuang  Lin  Xinhua 《Mikrochimica acta》2015,182(15):2387-2393

We describe a turn-off fluorescence-based strategy for the detection of ATP by making use of aptamer-triggered dsDNA concatamers. This sensitive and easily controlled method is based on consecutive hybridization induced by ATP aptamers and their sectional complementary DNAs to form dsDNA concatamers. The intercalator SYBR Green I (SGI) was employed as a fluorescent probe. In the absence of ATP, the probe produces a strong signal. However, on addition of ATP, the binding of aptamer and ATP cause the concatamers to collapse and to release SGI whose fluorescence then is quenched. The effect was exploited to design a selective ATP assay by relating the decrease in fluorescence to the ATP concentration. A lower detection limit of 6.1 μM and a linear response in the 0 to 5000 μM concentration range was accomplished. The strategy was applied to cellular ATP assays, and the results obtained by this strategy and by the gold standard method are in good agreement. The method is sensitive, simple and cost efficient, and hence is promising in terms of future applications to determine ATP in cellular and other systems.

A turn-off fluorescence-based strategy for the selective detection of ATP by using aptamer-triggered dsDNA concatamers.

  相似文献   

20.
Feng  Zhongmin  Guo  Tingting  Jiang  Zhiwen  Sun  Ting 《Mikrochimica acta》2015,182(15):2419-2425

We have investigated the possibility of sampling ammonium ion using the diffusive-gradients-in-thin-films technique (DGT) by introducing a novel binding agent that is based on micro-sized zeolite. The performance of zeolite-DGT was characterized by measurement of the following parameters: (1) the diffusion coefficient of ammonium ion in hydrogel; (2) the adsorption rate of ammonium ion by the zeolite binding gel; (3) the elution efficiency, and (4) the effects of pH, ionic strength and interfering ions on DGT. The method was validated by studying the uptake of ammonium ion from in freshwaters by zeolite gels which was found to be fast enough to meet the requirements of DGT. The concentrations determined via DGT agreed well with the concentrations determined in bulk solutions. Sampling of ammonium ion using zeolite-DGT was consistent over the pH 3 to 8 range and the 0.001 to 10 mM ionic strength range. The method also performs predictably in natural waters containing various metal ions. The technique is considered to be a viable passive tool for sampling ammonium from aqueous solutions.

Schematic representation of the principle of DGT and the determination of mass accumulated on the binding gel.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号