首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   7篇
化学   70篇
力学   4篇
数学   1篇
物理学   14篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   5篇
  2019年   4篇
  2018年   2篇
  2017年   4篇
  2016年   8篇
  2015年   5篇
  2014年   8篇
  2013年   3篇
  2012年   15篇
  2011年   8篇
  2010年   7篇
  2009年   2篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1999年   4篇
  1998年   1篇
  1994年   1篇
  1991年   1篇
排序方式: 共有89条查询结果,搜索用时 15 毫秒
1.
A rapid and sensitive liquid chromatography tandem mass spectrometry quantitative analysis method was established for the pharmacokinetics and tissue distribution study of physalin B in rat. Physalin B and physalin H (internal standard, IS) were separated on an Agilent Eclips XDB C8 column. MS detection was performed on a triple quadrupole tandem mass spectrometer in the multiple reaction monitoring mode with a positive eletrospray ionization source. The assay was validated in the concentration ranges of 22.6–22600 ng/mL for heart and lung and 4.52–4520 ng/mL for other tissues. The intra‐ and inter‐day precisions (RSD) were ≤9.23 and ≤12.51%, respectively, with accuracy (%) in the range of 88.07–113.2%. A pharmacokinetic study showed that physalin B has a long dwell time with a half‐life of 321.2 ± 29.5 min and clearance of 175.4 ± 25.7 mL/min/kg after intravenous administration. Additionally, physalin B showed a wide tissue distribution with a special higher penetration in lung. The data presented in this study could provide useful information for the further study of physalin B. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
2.
Liu  Qing  Na  Weidan  Wang  Lei  Su  Xingguang 《Mikrochimica acta》2017,184(9):3381-3387
Microchimica Acta - A sensitive fluorometric assay is reported for label-free detection of the activity of protein kinase (PKA) and of its inhibitors. It is based on the europium(III)-modulated...  相似文献   
3.
By using biphenyl‐2‐ylphosphines functionalized with a remote tertiary amino group as a ligand, readily available acetylenic amides are directly converted into 2‐aminofurans devoid of any electron‐withdrawing and hence deactivating/stabilizing substituents. These highly electron‐rich furans have rarely been prepared, let alone applied in synthesis, because of their high reactivities and low stabilities associated with the electron‐rich nature of the furan ring. In this work, these reactive furans smoothly undergo either in situ intermolecular Diels–Alder reactions to deliver highly functionalized/substituted aniline products or intramolecular ones to furnish carbazole‐4‐carboxylates in mostly good to excellent yields. This work offers general and expedient access to this class of little studies electron‐rich furans and should lead to exciting opportunities for their applications.  相似文献   
4.
Graphene is a two-dimensional carbon nanomaterial one atom thick. Interactions between graphene oxide (GO) and ssDNA containing different numbers of bases have been proved to be remarkably different. In this paper we propose a novel approach for turn-on fluorescence sensing determination of glucose. Hydrogen peroxide (H2O2) is produced by glucose oxidase-catalysed oxidation of glucose. In the presence of ferrous iron (Fe2+) the hydroxyl radical (?OH) is generated from H2O2 by the Fenton reaction. This attacks FAM-labelled long ssDNA causing irreversible cleavage, as a result of the oxidative effect of ?OH, producing an FAM-linked DNA fragment. Because of the weak interaction between GO and short FAM-linked DNA fragments, restoration of DNA fluorescence can be achieved by addition of glucose. Due to the excellent fluorescence quenching efficiency of GO and the specific catalysis of glucose oxidase, the sensitivity and selectivity of this method for GO-DNA sensing are extremely high. The linear range is from 0.5 to 10 μmol L?1 and the detection limit for glucose is 0.1 μmol L?1. The method has been successfully used for analysis of glucose in human serum. Figure
?  相似文献   
5.
6.
The authors describe a method for synthesizing graphene oxide quantum dots (GOQDs) possessing orange fluorescence with emission wavelength that can be tuned over the range from 537 to 593 nm by variation of the excitation wavelength. The GOQD display peroxidase-mimicking catalytic activity. Specifically, they catalyze the oxidation of dopamine to produce 4-(2-aminoethyl)benzene-1,2-quinone (AQ) which is colored and can quench the fluorescence of GOQDs. However, quenching is reversed by addition of NADP+, but not by its reduced form (NADPH). Based on these findings, an assay was worked out to monitor enzymatic reactions involving NADP+. The method allows NADPH to be detected in the 2–175 μM concentration range, with a 0.6 μM detection limit.
Graphical abstract Schematic of a top-down method for synthesizing fluorescent graphene oxide quantum dots (GOQD) by chemical degrading, exfoliation and self-assembly of graphene oxide (GO). The GOQDs display peroxidase-like activity and can oxidize dopamine to form a colored quinone that quenches the fluorescence of the GOQDs. The quenching efficiency is reduced, however, in the presence of NADP+.
  相似文献   
7.
Water-soluble CdTe quantum-dots (QDs) of different sizes and capped with mercaptosuccinic acid were prepared by the microwave irradiation method. The QDs can significantly enhance the chemiluminescence (CL) of the pyrogallol-H2O2 system. Those with a diameter of 3.8 nm produce the most intense CL. UV-vis, photoluminescence, and CL spectra were acquired in order to explore the effect. The results showed that the chromium(III) ion in the concentration range from 20 pM to 30 µM enhances CL, and this is exploited for its trace determination.The limit of detection (3σ) is 6 pM, with a relative standard deviation (n?=?11) of 1.7%. A continuous flow injection CL method was developed and applied to the determination of chromium(III) in tap water and lake water samples with satisfactory results.  相似文献   
8.
A novel, highly sensitive technology for the detection, enrichment, and separation of trace amounts of target DNA was developed on the basis of amino-modified fluorescent magnetic composite nanoparticles (AFMN). In this study, the positively charged amino-modified composite nanoparticles conjugate with the negatively charged capture DNA through electrostatic binding. The optimal combination of AFMN and capture DNA was measured by dynamic light scattering (DLS) and UV–vis absorption spectroscopy. The highly sensitive detection of trace amounts of target DNA was achieved through enrichment by means of AFMN. The detection limit for target DNA is 0.4 pM, which could be further improved by using a more powerful magnet. Because of their different melting temperatures, single-base mismatched target DNA could be separated from perfectly complementary target DNA. In addition, the photoluminescence (PL) signals of perfectly complementary target DNA and single-base mismatched DNA as well as the hybridization kinetics of different concentrations of target DNA at different reaction times have also been studied. Most importantly, the detection, enrichment, and separation ability of AFMN was further verified with milk. Simple and satisfactory results were obtained, which show the great potential in the fields of mutation identification and clinical diagnosis.  相似文献   
9.
We have developed an analytical method to detect adenosine-5′-triphosphate (ATP) and alkaline phosphatase (ALP) based on the generation of CdS quantum dots (QDs). We demonstrated that Cd2+ cation reacts with S2− anion to generate fluorescent CdS QDs in the presence of some certain amount of ATP. With increase in the ATP concentration, the fluorescence intensity of CdS QDs was also enhanced. ATP can be converted into adenosine by the dephosphorylation of ALP, so that the generation of CdS QDs would be inhibited in the presence of ALP. Therefore, this novel analysis system could be applied to assay ATP and ALP based on the growth of fluorescent CdS QDs.  相似文献   
10.
QD-Au NP@silica mesoporous microspheres have been fabricated as a novel enzyme-mimic nanosensor. CdTe quantum dots (QDs) were loaded into the core, and Au nanoparticles (NPs) were encapsulated in the outer mesoporous shell. QDs and Au NPs were separated in the different space of the nanosensor, which prevent the potential energy or electron transfer process between QDs and Au NPs. As biomimetic catalyst, Au NPs in the mesoporous silica shell can catalytically oxidize glucose as glucose oxidase (GOx)-mimicking. The resultant hydrogen peroxide can quench the photoluminescence (PL) signal of QDs in the microsphere core. Therefore the nanosensor based on the decrease of the PL intensity of QDs was established for the glucose detection. The linear range for glucose was in the range of 5–200 μM with a detection limit (3σ) of 1.32 μM.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号